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Executive Summary

Recently people have started using social media not only to keep in touch with family
and friends, but also increasingly as a news source. However, knowledge gathered from
online sources and social media comes with a major caveat – it cannot always be trusted.
Rumours, in particular, tend to spread rapidly through social networks, especially in cir-
cumstances where their veracity is hard to establish. For instance, during an earthquake
in Chile rumours spread through Twitter that a volcano has become active and there was a
tsunami warning in Valparaiso (Mendoza et al., 2010). This creates a large and real-time
need for veracity assessments and feedback for social media data.

To build a research system for rumour detection and classification, we need accurate
tools that can operate on very noisy text, in a variety of languages. These are vital to
catching rumours as they emerge and providing the most possible information to stake-
holders. Such tools often consist of multiple components and can be divided into discrete
subparts. Each of these parts must be able to tolerate the variances of user-generated con-
tent (UGC) in the respective language. This places performance constraints on the system
in terms of quality. The tools need to capture and provide enough information to enable
accurate rumour recognition and classification, which is a novel demand which PHEME

addresses.
Additionally, these tools also need to be able to inter-operate, and handle high volume

streaming content in a timely fashion. Therefore, there are not only quality performance
constraints on the system, but also computational performance constraints. Each service
must be able to process information at an acceptable rate, handle bursts, and handle failure
elegantly. Above this, common formats must be agreed by the consortium for exchanging
data in a consistent and comprehensible way. To achieve such a format, we all need to
know which information to add in order to supply complete information to other com-
ponents in the system. Between the variety of languages, partners and subsystems in the
consortium, this poses a challenging task.

This deliverable builds on work reported in the earlier Deliverable D6.2.1 and reports
the final evaluation for the methods and tools developed in WP3 and WP4 in PHEME. We
perform quantitative evaluation of the integrated components, as well as describing in-situ
the efficiency of the integrated Kafka pipeline for rumour processing.
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Chapter 1

Introduction

Recently people have started using social media not only to keep in touch with family
and friends, but also increasingly as a news source. However, knowledge gathered from
online sources and social media comes with a major caveat – it cannot always be trusted.
Rumours, in particular, tend to spread rapidly through social networks, especially in cir-
cumstances where their veracity is hard to establish. For instance, during an earthquake
in Chile rumours spread through Twitter that a volcano has become active and there was a
tsunami warning in Valparaiso (Mendoza et al., 2010). This creates a large and real-time
need for veracity assessments and feedback for social media data.

To build a research system for rumour detection and classification, we need accurate
tools that can operate on very noisy text, in a variety of languages. These are vital to
catching rumours as they emerge and providing the most possible information to stake-
holders. Such tools often consist of multiple components and can be divided into discrete
subparts. Each of these parts must be able to tolerate the variances of user-generated con-
tent (UGC) in the respective language. This places performance constraints on the system
in terms of quality. The tools need to capture and provide enough information to enable
accurate rumour recognition and classification, which is a novel demand which PHEME

addresses.

Additionally, these tools also need to be able to inter-operate, and handle high volume
streaming content in a timely fashion. Therefore, there are not only quality performance
constraints on the system, but also computational performance constraints. Each service
must be able to process information at an acceptable rate, handle bursts, and handle failure
elegantly. Above this, common formats must be agreed by the consortium for exchanging
data in a consistent and comprehensible way. To achieve such a format, we all need to
know which information to add in order to supply complete information to other com-
ponents in the system. Between the variety of languages, partners and subsystems in the
consortium, this poses a challenging task.

This deliverable builds on work reported in the earlier Deliverable D6.2.1 and reports
the final evaluation for the methods and tools developed in WP3 and WP4 in PHEME. We
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CHAPTER 1. INTRODUCTION 4

perform quantitative evaluation of the integrated components, as well as describing in-situ
the efficiency of the integrated Kafka pipeline for rumour processing.

Chapter 2 examines all the content analysis methods built so far. This covers sub-story
event detection, contradiction detection and rumour classification.

Chapter 3 puts forth the technical aspects of integration in PHEME.

1.1 Relevance to PHEME

The PHEME project aims to detect and study the emergence and propagation of rumours
in social media, which manifest as dubious or false claims. In order to do this, there are
many empirical and technical processes that need to have high quality performance and
be inter-operable. This deliverable serves to assess our progress towards both these goals.

1.1.1 Relevance to project objectives

Producing integrated research on rumour detection is a key goal of PHEME, and so we
require a prototype system for sharing results and demonstrating that our outputs work
not only in theory but also in practice.

In particular, this deliverable reports on a number of quantitative evaluation experi-
ments, and thus contributes directly to objective 5, defined in the PHEME description of
work, as follows:

Test and evaluate the newly developed methods through (i) quantitative ex-
periments on gold-standard data, acquired both through traditional domain
expert annotation and crowdsourcing; and (ii) qualitative assessments in the
use cases on health and digital journalism, involving key stakeholders from
two focus groups.

The focus of Task 6.4 and D6.2.2 is entirely quantitative, while qualitative assessment
with stakeholders is undertaken in the respective use cases (WP7 and WP8).

1.1.2 Relation to forthcoming and prior research in PHEME

This deliverable provides a single point of evaluation for much of the content analysis
work in WP3 (Contextual Interpretation) and WP4 (Detecting Rumours and Veracity).
Specifically, the latest results of T3.3 in WP3 are evaluated, as well as evaluation results
from WP4 on contradiction detection, rumour stance detection and veracity classification.
The results and findings from this document should be read in conjunction with the first
evaluation round, described in D6.2.1, which covered the evaluation of tools from WP2,
as well as earlier versions of the WP3 and WP4 methods evaluated here.



CHAPTER 1. INTRODUCTION 5

1.1.3 Relation to other work packages

The datasets created in Task 2.1, WP7, and WP8 are used for iterative development and
evaluation. This includes tuning of and reporting on content analytics methods from WP3
and WP4.



Chapter 2

Method Evaluation

This chapter examines the latest content analysis methods built in the course of the project
and reports on evaluation studies for corresponding work in WP3 (Contextual Interpreta-
tion) and WP4 (Detecting Rumours and Veracity) in PHEME. This covers sub-story event
detection, contradiction detection and rumour stance detection and veracity classification.

2.1 Sub-Story Detection Evaluation

Grouping documents and messages into coherent clusters is a crucial first step in making
collections human-accessible. This becomes more critical as information flows grow in
size. Existing techniques can work well, though usually only offline in a batch setting, or
with reasonably long documents. While social media offers a wealth more information,
applying these techniques to this varied text type, in a real-world setting where humans
are presented with clusters as thematic groups, or in real-time, leads to less satisfactory
results. The difficulty is compounded by reliance on shingle and n-gram-based methods
such as LSH and oHDP, which struggle with short or noisy texts.

However, accurately clustering documents as they emerge and continuing to do so as
stories develop is a difficult problem. It is also a useful one: being able to allocate a
meaningful categorization to documents in real-time aids many applications.

Social media offers rapid and broad views over many topics, and can be seen as ex-
pressing through its messages the latent variable of real-world events. However document
clustering is even tougher over social media. The high linguistic variation renders lexical
approaches ill-equipped to capture relevant documents, and while it offers explicit topic
markers (hashtags), the correct use of these is voluntary and far from guaranteed.

6



CHAPTER 2. METHOD EVALUATION 7

2.1.1 Approach

We take a definition and model of event clusters from results in cognitive science.
(D’Argembeau and Demblon, 2012) found that humans readily place observations and
memories in distinct clusters of events, sharing causal and thematic links. These may not
necessarily be hard clusters, that is, one element may occur in more than one cluster, but a
recollection of a cluster of events will, as a cluster in the computational sense, have certain
firm commonalities. Indeed, during the process of mental time travel, event clustering is
vital to structuring recollection.

Because language is an expression of thoughts and ideas, and n-grams or similar may
not reveal the whole picture directly, we prefer to base our approach on a higher-level
conceptual framework.

Commonalities between elements in event clusters, from a cognitive point of
view (D’Argembeau and Demblon, 2012), can be placed into various groups:

• Locations: common places between memories or descriptions (D’Argembeau and
Mathy, 2011)

• Actors: is a particular person or organization pivotal to the theme? (D’Argembeau
and Van der Linden, 2012)

• Activities: was a certain occurrence particularly poignant?

• Shared broader events

• Causal relations (Brown and Schopflocher, 1998)

Lexicalisations of these commonalities can take a variety of forms, not necessarily
close to each other. This leaves no guarantee that there will be any similar terms between
documents discussing the same event. The likelihood of lexical overlap decreases further
in social media streams; documents are typically shorter than e.g. news articles, and
contain more lexical and orthographic variation. These factors leave dominant n-gram
based clustering methods, e.g. LSH (Petrović et al., 2010) and oHDP (Wang et al., 2011),
ill-equipped to accurately group together all the texts that a human reader would consider
to be discussing the same event.

In general, we have tried to avoid language-dependent methods and reasoning, to
ease adaptation of the method to other languages. For example, we prefer not to include
parts of speech in any logic, instead leaving definition of event to the ISO-TimeML stan-
dard (Pustejovsky et al., 2010). However, this isn’t possible everywhere: for example,
tokenization, NER and event extraction all have language-specific implementations.
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2.1.2 Framework

The goal is to assign messages M = m0...mn from a stream S into a set of clusters K.
Each message should be assigned to a cluster as it arrives, without waiting on later infor-
mation, and assignments are final. To achieve this, each incoming message mi is com-
pared to each cluster k0...kn ∈ K and a matching function fmatch(m, k) scores whether
the message is a good fit for that cluster. The message is then assigned to the cluster hav-
ing the highest match score, whose internal representation is updated accordingly. This
gives a hard clustering; a soft clustering can be achieved by assigning top-k best matches
instead. If no cluster matches well enough, then a new cluster is created, consisting of
just mi. A gating threshold tmatch is used to determine which values of fmatch can be
considered potential matches; if no cluster matches well enough, this triggers new cluster
creation. Thus, tmatch allows control of the rate of cluster creation and how coarse or fine
clusters are.

As it stands, this method leads to an ever-increasing number of clusters over time.
While this is possibly suitable for batch clusterings, it is not tolerable in a streaming
environment. To address this, an upper threshold on the number of clusters tK is set.
Whenever this is exceeded by means of a new cluster creation, a cluster is pruned fromK,
to keep |K| = tK . We implement two pruning policies, drawing from standard caching;
least-recently-used or LRU, which takes the cluster that has not been updated for the
longest amount of time; and age, which takes the cluster with the oldest creation date.
This constrains processing time to O(tK) in this regard.

Each message is converted to a feature representation. This is compared to an internal
cluster representation. The overlap between these two is used to generate the final feature
representation for the matching function.

2.1.3 Cluster representation

Each event cluster ki ∈ K is represented using information about messages that have
been to assigned to it and cluster-specific metadata. Event cluster representations are
updated when assigned a new message. k is a tuple 〈A, n, Z,R,~e, L〉 defined as follows.
A = (a1, a2, ..., an) is a set of attributes. Each attribute ai is a key:count pair, counting the
number of times the key has been observed in messages added to the cluster. Attributes
are: hashtags, named entities (as (surfaceform, entityclass) tuples), URLs, username
mentions, event lexicalisations, and locations. n is the number of messages that have
been assigned to the cluster. Z comprises relevant time points (zstart, zrecent), the cluster
inception time and the datestamp of the most recent message, respectively. R is a set of
related message IDs seen in all messages assigned to the cluster, and the number of times
they have each been observed in added messages (similar to the tuples in A). ~e is a vector
representation of the most frequent event lexicalisation observed in the cluster. Finally, L
is a parameterized minhash LSH index (Indyk and Motwani, 1998; Broder, 2000) specific
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to the cluster.

To model that clusterings depend on both time and the text of related messages, we
explicitly capture the currency, or age, of clusters. This is intuitively a factor in how likely
an incoming message is to belong to a cluster. From the cognitive point of view, temporal
distance relates well to vividness of episodic thoughts (D’Argembeau and Van der Lin-
den, 2012). Two features capture temporal proximity in clusters, in Z. The difference
between the document timestamp and candidate cluster inception is taken, in seconds.
Additionally, the time elasped between document timestamp and the last addition to the
cluster is taken, to model how “hot” the cluster is. Time values are scaled linearly, from a
minimum -1 at identical time to maximum +1 for one day or more’s delay.

While lexical overlap is less likely between social media posts, it is not worth dis-
carding entirely. Accordingly, we build a feature comparing the LSH overlap between a
candidate posts and a map kept for each cluster. Each cluster is therefore created with a
minhash1 having threshold 0.3 and 128 permutations. When a message is assigned to a
cluster, the cluster’s minhash is updated with that message’s text.

2.1.4 Message Representation

Messages are represented using various entities, temporal and discourse metadata from
the message, and finally lexical information. Each message representation mi ∈ M is
a tuple 〈Am, rid, zstamp, R

m,~h,H〉 thus. Am = (am1 , a
m
2 , ..., a

m
n ) is a set of attributes –

hashtags, named entity lexicalisation:type tuples, URLs, username mentions, event sur-
face forms, and locations. rid is the message ID.2 zstamp is the creation timestamp of the
message, converted to epoch time (i.e. UTC). The set Rm contains the IDs of related
messages mentioned in this message’s metadata. ~h is a vector embedding of the main
event word in the message, defined as the head event of the first sentence. Lastly, H is a
minhash of the message text as bytestring (128 permutations).

Two classes of entities are extracted: traditional named entities, and spatio-temporal
entities. Named entities are extracted through chunking, using the entity recognition
Python module (Derczynski et al., 2015), using CRF, orthographic features and Brown
clusters.

For named entity recognition, we train using the (Ritter et al., 2011) twitter dataset. To
improve the ability to cope with the increased variation-caused vocabulary in social media
documents, we induced Brown clusters (Brown et al., 1992) over a mixture of newswire
and twitter texts.3 Data scarcity is a problem in streaming situations where drift increases
the variety of entity surface forms over time, though this drift-induced scarcity will not
be highlighted well when evaluating against static collections. This named entity system

1Using the Python datasketch implementation.
2Typically id str for tweets.
3Parameters: 64M tokens from RCV1 cleaned as per (Liang, 2005a) with 64M English tweets from the

garden hose; c=6000, min-occur=1.
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Task Precision Recall F1
Event 68.55 69.29 68.92
Timex 59.57 52.83 56.00
Location 81.25 64.36 71.82
Spatial entity 48.15 18.06 26.26

Table 2.1: Spatio-temporal entity recognition in tweets

recognizes person, location and organization entities.

Spatial objects are extracted again using the same toolkit and configuration, trained on
both an ISO-Space corpus (Pustejovsky et al., 2011) and also the WNUT 2015 data (Bald-
win et al., 2015) with geo-loc and facility annotations mapped to location. Locations
found from NER are merged into these spatial objects, and this union forms the final set
of location mentions found in a given document.

Temporal entities extracted are events and temporal expressions, following definitions
from ISO-TimeML. To find these, we train an NER system on TimeBank 1.2 (Puste-
jovsky et al., 2003), a TimeML corpus (again, entity recognition using cross-
genre Brown clusters). This enables extraction of TimeML events, with the blended cor-
pus for word cluster induction intended to bridge the domain gap between newswire in
TimeBank and social media data. Critically, we extract only a subset of these, ignoring
state and i state-type events as they are intuitively less strong matches to the kind of event
put forward in a cognitive event clustering ontology (Section 2.1.1).

We also created a spatio-temporally annotated corpus over 400 tweets, labelling
events, temporal expressions and ISO-Space locations. The source data was taken from
an event-centric published twitter dataset (Zubiaga et al., 2016). The resulting dataset
contained 605 events, 122 timexes, 139 spatial entities and 223 locations. These were
combined with existing gold-standard datasets. For the temporal entity annotation, the
TempEval-2 data (Verhagen et al., 2010) was mixed in. For the spatial entity annotation,
the W-NUT data (Baldwin et al., 2015) was added, mapping facility to spatial entity and
geo-loc to location. Data was split 80/20 for training and evaluation. Finally, to take into
account the mutually exclusive nature of spatio-temporal bisemy (where words often have
a spatial and temporal sense, but cannot present both at the same time), we add a feature
to the extraction system for spatial and temporal entities. We add a feature for each signal
word encountered, describing the chance such terms have of taking a spatial or temporal
sense, based on word lists from external lexica. For example, 69.4% of occurrences of the
word “until” had a temporal sense in this corpus, so when this word is found, a feature
tempsignal=0.694 is added. This extends the technology developed earlier in PHEME and
reported in D2.3.

Results are given in Table 2.1.4. These are generally good, though the spatial entities
are hard to recognise. This is the same in ISO-Space recognition on newswire in large
corpora, and attributable to the subjective annotation of this type: a spatial entity is defined
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in ISO-Space as being an object that participates in a spatial relation.4 Therefore, spatial
entities are very hard to consistently detect without also finding spatial relations in a text,
something that is beyond the scope of this work. Nevertheless, precision is not disastrous
at 48.15, so spurious detections at scale are likely to comprise background noise.

Unlike A in the cluster representation, ami ∈ Am is a set, indicating only whether or
not a value appears in the message, and not the number of times. This means repetition has
no effect, so the two messages “#nlproc” and “#nlproc #nlproc #nlproc” are equivalent
in this regard.

Note that our temporal processing, while more sophisticated than in prior message
clustering technicals and operating at both text and metadata levels, is still crude: we do
not attempt to connect events to timelines, or account for tense or for reference time (Re-
ichenbach, 1947). Instead, we assume that events discussed relate to the present. This
is true for some social media messages, but not all; studies show that e.g. Twitter users
select no single temporal reference style (Hu et al., 2013).

Additionally, we extract username mentions, hashtags, and expanded versions of the
URLs mentioned. These both can provide commonalities between messages, bringing in
the same users, topics and public conversations, or by referring to the same sources. To
capture conversational context, we also extract the IDs of any other documents referred
to by this one – e.g. messages that are quoted, referred to in a picture, replied to by this,
or the source of a retweet.

Text pre-processing is performed by earlier stages in the PHEME pipeline. Specifi-
cally, this includes language ID and tokenisation. Both are described in D2.2.

2.1.5 Features

For a given message:cluster pair, feature tuple X = 〈Zx, Ax, o, r, ~s〉 is calculated based
on candidate message mc and cluster kc. Times Z = (zage, zrecency) represent the time
between the message’s creation and cluster inception / cluster’s most recent addition re-
spectively. These periods are normalized to the range [-1 .. 1] where 1 represents now
and -1 a day (or more) ago, scaled linearly. Attributes ax ∈ A are drawn from entity lex-
icalization:type tuples, event words, hashtags, URLs, locations and username mentions.
Each attribute is a tuple of coverage and unity a = 〈c, u〉. Coverage is the proportion of
items appearing in the message that have already been seen in messages assigned to the
cluster. As the cluster is likely to contain a wealth of seen items as it ages, this value is
likely to decrease. We therefore scale c to increase the reward at low levels, formulating
it thus:

4For example, in the sentences “The house is in Tokyo. It is a good house.”, the first house is a spatial
entity as it interacts spatially with Tokyo, but house in the second sentence is not a spatial entity, as it has no
spatial interaction. Nevertheless, ISO-Space offers the breadth of definition best aligned with our approach.
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c =

(
|am ∩ a|
|a|

)lc

(2.1)

This gives a c a range of 0.0 .. 0.1. Coefficient lc is set to 0.6 for good general results.

Unity represents how tightly bound the message is to the cluster by reflecting what
proportion of the items in this attribute, expressed in the message, are found in the cluster.
Messages that for example contain only hashtags coming from a candidate cluster, with
have a high unity value for hashtags. The initial unity v is determined as the number of
sightings of that value in the cluster (capturing common objects is more valuable), divided
by the cluster size, all divided by the number v’s attribute type (i.e. hashtag, event) is seen
in the message. Thus, given as above representations of cluster k (having size n) and
message m, and where i is an attribute type, and aij is the number of times value j occurs
in cluster attribute a having type i:

v =

∑
j∈ai

|aij |
n

|ami |
(2.2)

The goal is to give higher scores to messages that present items common in a cluster
as their main features of that item type. For example, a cluster where Stockholm is a
frequently mentioned location would achieve a good unity score with a short message
that mentioned Stockholm twice and no other locations.

This generates potentially large values, depending on the quality of the match, and
needs to be scaled. Based on development experiments, the maximum useful value for
v (i.e. vmax) is around 3, and a concave responsiveness function helps. The following
scaling is applied to derive final unity u:

uunclipped =
minv,vmax

lv

vscale
(2.3)

u =

{
uunclipped, if uunclipped < 1

1, otherwise
(2.4)

Where coefficient lv = logvmaxvscale. Testing revealed vscale to give good results in
most cases.

Unity u has a range of 0 .. 1, and so u and c are scaled linearly to the range -1 .. 1 so
they align with other features.

o is the number of in-cluster messages in the cluser LSH matching the messages’s
minhash, with threshold tlsh, normalized by cluster size n and square rooted to give low
values boosted effect. The square root is there to scale the feature so low values have
slightly impact (values are from 0 to 1). r is a signal indicating related messages common
to both candidate message and cluster, of value either -1 or 1.
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Lastly, ~s represents event similarity. It is the arithmetic difference of the cluster most-
common event word embedding and the message head event embedding, ~s = ~e−~h. This
is intended to help capture documents describing similar events using different surface
forms. This approach is available because ISO-TimeML events are always a single term,
making their representations easy to find. The metric does not address the lack of a guar-
antee of equal scale throughout vector space5, but we find it a sufficient proxy for event
relatedness. We use GloVe embeddings (Pennington et al., 2014), with 25 dimensions,
for this purpose.

In total, this gives a feature representation of how well a message compares with a
cluster, based on intermediate representations of the message and the cluster. This keeps
feature representations for the matching function generic, avoiding message-specific in-
formation such as particular words or times; rather, (message,cluster) comparisons are
presented as a degree of overlap along the various dimensions described above. Note
that the final feature vector is language-independent, easing language adaptation of the
system. The generic representation is fed into our model as a vector of real values.

2.1.6 Classifier

The classifier is a deep neural net, implemented using Keras (Chollet, 2015). The first
layer takes inputs from feature representations, with tanh activation. This is followed by
three layers each of 80 units; two LeakyReLU layers with k = 0.01 (Maas et al., 2013),
and a tanh layer with dropout (δ = 0.05) (Hinton et al., 2012). The output layer is a
single sigmoid-activation node. All layers except input and output use fan in Gaussian
initialization (He et al., 2015),

The network is trained with adam optimization using binary cross-entropy as the
loss function. Training data is generated by building representations of the training data
clusters with each individual message held out, giving k examples (where k is the number
of clusters) for each gold-standard example – save for singleton messages. This generates
one positive and k−1 negative examples for each input message, which leads to high class
balance in the training data to negative matches. Such a balance is typically reflected
in trained classifier performance, and so to reduce it, negative examples are randomly
downsampled to 1% of the generated amount in the used training data.

This system provides the matching function fmatch, giving a value in the range 0..1 for
a given (message,cluster) pair. Threshold tmatch gives the position of a gate for converting
this output to match / no-match.

5I.e. that a certain absolute distance in different regions might not mean the same semantic distance.
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Approach C H V NMI ARI
LSH 0.606 0.723 0.658 0.661 0.021
oHDP 0.392 0.271 0.278 0.291 0.014
ES 0.960 0.792 0.867 0.871 0.536

Table 2.2: Clustering performance – Rumour dataset

2.1.7 Evaluation

We compare our system against two other algorithms, the classic LSH and also the recent
high-performer oHDP (Wang et al., 2011; Srijith et al., 2016). These form our baselines.

Intrinsic Evaluation

We evaluate ES clustering with multiple metrics.

H, C, V-measure – From (Rosenberg and Hirschberg, 2007), V-measure draws on the
concepts of Homogeneity and Completeness to provide a metric better suited to clustering
and less dataset-dependent than F1.

Adjusted Rand Index – A classic clustering evaluation metrics, the Rand Index (RI) is
a counting-pairs measure of the proportion of correct assignments (Rand, 1971).

Normalised Mutual Information – An information-theoretic evaluation measure, nor-
malised for cluster count to allow fair evaluation of clusterings where different numbers
of clusters are generated.

Results for the Pheme rumour dataset are in Table 2.2. The task here is to group
together reports of claims and the discourse around them. We can see that for clustering-
specific evaluation measures, ES clustering reaches high performance when applied to
this streaming social media scenario, with a V-measure over 0.86. For comparison, prior
approaches developed within Pheme reached good scores, but we were still able to im-
prove on these for a better system result.

2.2 Entailment and Contradiction Detection

The utilization of social media material in journalistic workflows is increasing, demanding
automated methods for the identification of mis- and disinformation. Since textual con-
tradiction across social media posts can be a signal of rumorousness, we seek to model
how claims in Twitter posts are being textually contradicted. We identify two different
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contexts in which contradiction emerges: its broader form can be observed across inde-
pendently posted tweets and its more specific form in threaded conversations. We define
how the two scenarios differ in terms of central elements of argumentation: claims and
conversation structure. We design and evaluate models for the two scenarios uniformly
as 3-way Recognizing Textual Entailment tasks in order to represent claims and con-
versation structure implicitly in a generic inference model, while previous studies used
explicit or no representation of these properties. To address noisy text, our classifiers
use simple similarity features derived from the string and part-of-speech level. Corpus
statistics reveal distribution differences for these features in contradictory as opposed to
non-contradictory tweet relations, and the classifiers yield state of the art performance.

In this deliverable we focus on the presentation of the evaluation studies. Detailed dis-
cussion of our work analyzing and testing the use of Recognizing Textual Entailment for
the detection of contradictions is given in D4.2.2 ”Algorithms for Detecting Disputed In-
formation: Final Version” (https://www.pheme.eu/wp-content/uploads/
2016/06/D422_final.pdf) and more recently in (Lendvai and Reichel, 2016), pre-
sented at the COLING 2016 Workshop on Extra-Propositional Aspects of Meaning, from
which we take most of the description of our evaluation study for this deliverable.

2.2.1 Task Definition

Assigning a veracity judgment to a claim appearing on social media requires complex pro-
cedures including reasoning on claims aggregated from multiple microposts, to establish
claim veracity status (resolved or not) and veracity value (true or false). Until resolu-
tion, a claim circulating on social media platforms is regarded as a rumor (Mendoza et al.,
2010). The detection of contradicting and disagreeing microposts supplies important cues
to claim veracity processing procedures. These tasks are challenging to automatize not
only due to the surface noisiness and conciseness of user generated content. One compli-
cating factor is that claim denial or rejection is linguistically often not explicitly expressed,
but appears without classical rejection markers or modality and speculation cues (Morante
and Sporleder, 2012). Explicit and implicit contradictions furthermore arise in different
contexts: in threaded discussions, but also across independently posted messages; both
contexts are exemplified in Figure 2.1 on Twitter data.

Language technology has not yet solved the processing of contradiction-powering
phenomena, such as negation (Morante and Blanco, 2012) and stance detection (Mo-
hammad et al., 2016), where stance is defined to express speaker favorability towards an
evaluation target, usually an entity or concept6. In the veracity computation scenario we
can speak of claim targets that are above the entity level: targets are entire rumors, such
as ’11 people died during the Charlie Hebdo attack’. Contradiction and stance detection
have so far only marginally been addressed in the veracity context (de Marneffe et al.,
2012; Ferreira and Vlachos, 2016; Lukasik et al., 2016).

6The approach of PHEMEto stance detection is described in section 2.4 further below
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Figure 2.1: Explicit (far left: in threads, left: in independent posts) vs implicit (right:
in threads, far right: in independent posts) contradictions in threaded discussions and in
independent posts.

T4.2 Detecting Disputed Information: Entailment and Contradictions of PHEMEhas
been investigating the advantages of incorporating claim target and conversation context
as premises in the Recognizing Textual Entailment (RTE) framework for contradiction
detection in rumorous tweets. Our goals are manifold: (a) to offer richer context in con-
tradiction modeling than what would be available on the level of individual tweets, the
typical unit of analysis in previous studies; (b) to train and test supervised classifiers for
contradiction detection in the RTE inference framework; (c) to address contradiction de-
tection at the level of text similarity only, as opposed to semantic similarity (Xu et al.,
2015); (d) to distinguish and focus on two different contradiction relationship types, each
involving specific combinations of claim target mention, polarity, and contextual proxim-
ity, in particular:

1. Independent contradictions: Contradictory relation between independent posts,
in which two tweets contain different information about the same claim target that
cannot simultaneously hold. The two messages are independently posted, i.e., not
occurring within a structured conversation.

2. Disagreeing replies: Contradictory relation between a claim-originating tweet and
a direct reply to it, whereby the reply expresses disagreement with respect to the
claim-introducing tweet.

Contradiction between independently posted tweets typically arises in a broad dis-
course setting, and may feature larger distance in terms of time, space, and source of
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information. The claim target is mentioned in both posts in the contradiction pair, since
these posts are uninformed about each other or assume uninformedness of the reader, and
thus do not or can not make coreference to their shared claim target. Due to the same rea-
son, the polarity of both posts with respect to the claim can be identical. Texts paired in
this type of contradiction resemble those of the recent Interpretable Semantic Similarity
shared task (Agirre et al., 2016) that calls to identify five chunk level semantic relation
types (equivalence, opposition, specificity, similarity or relatedness) between two texts
that originate from headlines or captions. Disagreeing replies are more specific instances
of contradiction: contextual proximity is small and trivially identifiable by means of e.g.
social media platform metadata, for example the property encoding the tweet ID to which
the reply was sent, which in our setup is always a thread-initiating tweet. The claim
target is by definition assumed to be contained in the thread-initiating tweet (sometimes
termed as claim- or rumor-source tweet). It can be the case that the claim target is not
contained in the reply, which can be explained by the proximity and thus shared context
of the two posts. The polarity values in source and reply must by definition be different;
we refer to this scenario as Disagreeing replies. Importantly, replies may not contain a
(counter-)claim on their own but some other form to express disagreement and polarity –
for example in terms of speculative language use, or the presence of extra-linguistic cues
such as a URL pointing to an online article that holds contradictory content. Such cues
are difficult to decode for a machine, and their representation for training automatic clas-
sifiers is largely unexplored. Note that we do not make assumptions or restrictions about
how the claim target is encoded textually in any of the two scenarios.

In this study, we tackle both contradiction types using a single generic approach: we
recast them as three-way RTE tasks on pairs of tweets. The findings of our previous study
in which semantic inference systems with sophisticated, corpus-based or manually created
syntactico-semantic features were applied to contradiction-labeled data indicate the lack
of robust syntactic and semantic analysis for short and noisy texts (see Chapter 3 in the
Pheme deliverable D4.2.2). This motivates our current simple text similarity metrics in
search of alternative methods for the contradiction processing task.

In Sections 2.2.2 and 2.2.3 present and motivate the collections and the features used
for modeling. After the description of method and scores in Section 2.2.4, findings are
discussed in Section 2.2.5.

2.2.2 Data

The two datasets corresponding to our two tasks are drawn from a freely available, an-
notated social media corpus7 that was collected from the Twitter platform8 via filtering
on event-related keywords and hashtags in the Twitter Streaming API. We worked with

7https://figshare.com/articles/PHEME rumour scheme dataset journalism use case/2068650
8twitter.com
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event ENT CON UNK #uniq #uniq ENT CON UNK #uniq #uniq
clms tws clms tws

chebdo 143 34 486 36 736 647 427 866 27 199
gwings 39 6 107 13 176 461 257 447 4 29
ottawa 79 37 292 28 465 555 377 168 18 125
ssiege 112 59 456 37 697 332 317 565 21 143

373 136 1341 114 2074 1995 1378 2046 70 496

Table 2.3: Threads (left) and iPosts (right) RTE datasets compiled from 4 crisis events:
amount of pairs per entailment type (ENT, CON, UNK), amount of unique rumorous
claims (#uniq clms) used for creating the pairs, amount of unique tweets discussing these
claims (#uniq tws).

English tweets related to four events: the Ottawa shooting9, the Sydney Siege10, the Ger-
manwings crash11, and the Charlie Hebdo shooting12. Each event in the corpus was pre-
annotated as explained in (Zubiaga et al., 2015b) for several rumorous claims13 – officially
not yet confirmed statements lexicalized by a concise proposition, e.g. ”Four cartoonists
were killed in the Charlie Hebdo attack” and ”French media outlets to be placed under po-
lice protection”. The corpus collection method was based on a retweet threshold, therefore
most tweets originate from authoritative sources using relatively well-formed language,
whereas replying tweets often feature non-standard language use.

Tweets are organized into threaded conversations in the corpus and are marked up
with respect to stance, certainty, evidentiality, and other veracity-related properties; for
full details on released data we refer to (Zubiaga et al., 2015b). The dataset on which we
run disagreeing reply detection (henceforth: Threads) was converted by us to RTE for-
mat based on the threaded conversations labeled in this corpus. We created the Threads
RTE dataset drawing on manually pre-assigned Response Type labels by (Zubiaga et al.,
2015b) that were meant to characterize source tweet – replying tweet relations in terms
of four categories. We mapped these four categories onto three RTE labels: a reply pre-
labeled as Agreed with respect to its source tweet was mapped to Entailment, a reply
pre-labeled as Disagreed was mapped to Contradiction, while replies pre-labeled as Ap-
pealforMoreInfo and Comment were mapped to Unknown. Only direct replies to source
tweets relating to the same four events as in the independent posts RTE dataset were
kept. There are 1,850 tweet pairs in this set; the proportion of contradiction instances
amounts to 7%. The Threads dataset holds CON, ENT and UNK pairs as exemplified
below. Conform the RTE format, pair elements are termed text and hypothesis – note that
directionality between t and h is assumed as symmetric in our current context so t and h

9https://en.wikipedia.org/wiki/2014 shootings at Parliament Hill, Ottawa
10https://en.wikipedia.org/wiki/2014 Sydney hostage crisis
11https://en.wikipedia.org/wiki/Germanwings Flight 9525
12https://en.wikipedia.org/wiki/Charlie Hebdo shooting
13Rumor, rumorous claim and claim are used interchangeably throughout the paper to refer to the same

concept.
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are assigned based on token-level length.

• CON<t>We understand there are two gunmen and up to a dozen hostages inside
the cafe under siege at Sydney.. ISIS flags remain on display 7News</t> <h>not
ISIS flags</h>

• ENT <t>Report: Co-Pilot Locked Out Of Cockpit Before Fatal Plane Crash URL
Germanwings URL</t> <h>This sounds like pilot suicide.</h>

• UNK <t>BREAKING NEWS: At least 3 shots fired at Ottawa War Memorial. One
soldier confirmed shot - URL URL</t> <h>All our domestic military should be
armed, now.</h>.

The independently posted tweets dataset (henceforth: iPosts) that we used for contra-
diction detection between independently emerging claim-initiating tweets is described in
(Lendvai et al., 2016). This collection is holds 5.4k RTE pairs generated from about 500
English tweets using semi-automatic 3-way RTE labeling, based on semantic or numeric
mismatches between the rumorous claims annotated in the data. The proportion of con-
tradictory pairs (CON) amounts to 25%. The two collections are quantified in Table 2.3.
iPosts dataset examples are given below.

• CON <t>12 people now known to have died after gunmen stormed the Paris HQ
of magazine CharlieHebdo URL URL</t> <h>Awful. 11 shot dead in an assault
on a Paris magazine. URL CharlieHebdo URL</h>

• ENT <t>SYDNEY ATTACK - Hostages at Sydney cafe - Up to 20 hostages - Up
to 2 gunmen - Hostages seen holding ISIS flag DEVELOPING..</t> <h>Up to 20
held hostage in Sydney Lindt Cafe siege URL URL</h>

• UNK <t>BREAKING: NSW police have confirmed the siege in Sydney’s CBD
is now over, a police officer is reportedly among the several injured.</t>
<h>Update: Airspace over Sydney has been shut down. Live coverage: URL
sydneysiege</h>.

2.2.3 Text similarity features

Data preprocessing on both datasets included screen name and hashtag sign removal
and URL masking. Then, for each tweet pair we extracted vocabulary overlap
and local text alignment features. The tweets were part-of-speech-tagged using the
Balloon toolkit (Reichel, 2012) (PENN tagset, https://catalog.ldc.upenn.
edu/docs/LDC95T7/cl93.html), normalized to lowercase and stemmed using an
adapted version of the Porter stemmer (Porter, 1997). Content words were defined to be-
long to the set of nouns, verbs, adjectives, adverbs, and numbers, and were identified by
their part of speech labels. All punctuation was removed.
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Vocabulary overlap

Vocabulary overlap was calculated for content word stem types in terms of the Cosine
similarity and the F1 score. The Cosine similarity of two tweets is defined as C(X, Y ) =
|X∩Y |√
|X|·|Y |

, where X and Y denote the sets of content word stems in the tweet pair.

The F1 score is defined as the harmonic mean of precision and recall. Precision and
recall here refer to covering the vocabularyX of one tweet by the vocabulary Y of another

tweet (or vice versa). It is given by F1 = 2·
|X∩Y |
|X| ·

|X∩Y |
|Y |

|X∩Y |
|X| +

|X∩Y |
|Y |

. Again the vocabulariesX and Y

consist of stemmed content words. Just like the Cosine index, the F1 score is a symmetric
similarity metric.

These two metrics are additionally applied to the content word POS label invento-
ries within the tweet pair, which gives the four features cosine, cosine pos, f score, and
f score pos, respectively.

Local alignment

The amount of stemmed word token overlap was measured by applying local alignment of
the token sequences using the Smith-Waterman algorithm (Smith and Waterman, 1981).
We chose a score function rewarding zero substitutions by +1, and punishing insertions,
deletions, and substitutions each by 0-reset. Having filled in the score matrix H , align-
ment was iteratively applied the following way:

while max(H) ≥ t

– trace back from the cell containing this maximum the path leading to it until a zero-cell is
reached
– add the substring collected on this way to the set of aligned substrings
– set all traversed cells to 0.

The threshold t defines the required minimum length of aligned substrings. It is set
to 1 in this study, thus it supports a complete alignment of any pair of permutations of
x. The traversed cells are set to 0 after each iteration step to prevent that one substring
would be related to more than one alignment pair. This approach would allow for two
restrictions: to prevent cross alignment not just the traversed cells [i, j] but for each of
these cells its entire row i and column j needs to be set to 0. Second, if only the longest
common substring is of interest, then the iteration is trivially to be stopped after the first
step. Since we did not make use of these restrictions, in our case the alignment supports
cross-dependencies and can be regarded as an iterative application of a longest common
substring match.
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From the substring pairs in tweets x and y aligned this way, we extracted two text
similarity measures:

• laProp: the proportion of locally aligned tokens over both tweets m(x)+m(y)
n(x)+n(y)

• laPropS: the proportion of aligned tokens in the shorter tweet m(ẑ)
n(ẑ)

, ẑ =

arg minz∈{x,y}[n(z)],

where n(z) denotes the number of all tokens and m(z) the number of aligned tokens
in tweet z.

Corpus statistics

Figures 2.2 and 2.3 show the distribution of the features introduced above each for a
selected event in both datasets. Each figure half represents a dataset; each subplot shows
the distribution of a feature in dependence of the three RTE classes for the selected event
in that dataset.

The plots indicate a general trend over all events and datasets: the similarity features
reach highest values for the ENT class, followed by CON and UNK. Kruskal-Wallis tests
applied separately for all combinations of features, events and datasets confirmed these
trends, revealing significant differences for all boxplot triplets (p < 0.001 after correction
for type 1 errors in this high amount of comparisons using the false discovery rate method
of (Benjamini and Yekutieli, 2001)). Dunnett post hoc tests however clarified that for 16
out of 72 comparisons (all POS similarity measures) only UNK but not ENT and CON
differ significantly (α = 0.05). Both datasets contain the same amount of non-significant
cases. Nevertheless, these trends are encouraging to test whether an RTE task can be
addressed by string and POS-level similarity features alone, without syntactic or semantic
level tweet comparison.

2.2.4 RTE classification experiments for Contradiction and Dis-
agreeing Reply detection

In order to predict the RTE classes based on the features introduced above, we trained
two classifiers: Nearest (shrunken) centroids (NC) (Tibshirani et al., 2003) and Random
forest (RF) (Statistics and Breiman, 2001), using the R wrapper package Caret 14 with the
methods pam and rf, respectively. To derive the same number of instances for all classes,
we applied separately for both datasets resampling without replacement, so that the total
data amounts about 4,550 feature vectors equally distributed over the three classes, the
majority of 4,130 belonging to the iPosts data set. Further, we centered and scaled the

14https://cran.r-project.org/web/packages/caret/index.html
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Figure 2.2: Distributions of the similarity metrics by tweet pair class for the event chebdo
in the Threads (left) and the iPosts dataset (right).

Figure 2.3: Distributions of the similarity metrics by tweet pair class for the event ssiege
in the Threads (left) and the iPosts dataset (right).
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feature matrix. Within the Caret framework we optimized the tunable parameters of both
classifiers by maximizing the F1 score. This way the NC shrinkage delta was set to 0,
which means that the class reference centroids are not modified. For RF the number
of variables randomly sampled as candidates at each split was set to 2. The remaining
parameters were kept default.

The classifiers were tested on both datasets in a 4-fold event-based held-out setting,
training on three events and testing on the remaining one (4-fold cross-validation, CV),
quantifying how performance generalizes to new events with unseen claims and unseen
targets. The CV scores are summarized in Tables 2.4 and 2.5. It turns out generally
that classifying CON is more difficult than classifying ENT or UNK. We observe a de-
pendency of the classifier performances on the two contradiction scenarios: for detecting
CON, RF achieved higher classification values on Threads, whereas NC performed better
on iPosts. General performance across all three classes was better in independent posts
than in conversational threads.

Definitions of contradiction, the genre of texts and the features used are dependent
on end applications, making performance comparison nontrivial. On a different subset
of the Threads data in terms of events, size of evidence, 4 stance classes and no resam-
pling, (Lukasik et al., 2016) report .40 overall F-score using Gaussian processes, cosine
similarity on text vector representation and temporal metadata. Our previous experiments
were done using the Excitement Open Platform incorporating syntactico-semantic pro-
cessing and 4-fold CV. For the non-resampled Threads data we reported .11 F1 on CON
via training on iPosts15. On the non-resampled iPosts data we obtained .51 overall F1
score (Lendvai et al., 2016), F1 on CON being .2516 .

CON ENT UNK
F1 (RF/NC) 0.33/0.35 0.55/0.59 0.51/0.57

precision 0.35/0.40 0.54/0.61 0.54/0.57
recall 0.32/0.34 0.58/0.59 0.56/0.67

accuracy 0.47/0.51
wgt F1 0.48/0.51

wgt prec. 0.51/0.55
wgt rec. 0.47/0.51

Table 2.4: iPosts dataset. Mean and weighted (wgt) mean results on held-out data after
event held-out cross validation for the Random Forest (RF) and Nearest Centroid (NC)
classifiers.

15See Pheme Deliverable 4.2.2. https://www.pheme.eu/wp-content/uploads/2016/06/
D422_final.pdf

16See Pheme Deliverable 4.2.2. https://www.pheme.eu/wp-content/uploads/2016/06/
D422_final.pdf
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CON ENT UNK
F1 (RF/NC) 0.37/0.11 0.45/0.50 0.40/0.36

precision 0.42/0.07 0.52/0.56 0.34/0.31
recall 0.35/0.20 0.41/0.47 0.50/0.61

accuracy 0.42/0.39
wgt F1 0.43/0.32

wgt prec. 0.47/0.33
wgt rec. 0.42/0.39

Table 2.5: Threads dataset. Mean and weighted (wgt) mean results on held-out data after
event held-out cross validation for the Random forest and Nearest Centroid classifiers
(RF/NC).

We proposed to model two types of contradictions: in the first both tweets encode the
claim target (iPosts), in the second typically only one of them (Threads). The Nearest
Centroid algorithm performs poorly on the CON class in Threads where textual overlap
is typically small especially for the CON and UNK classes, in part due to the absence of
the claim target in replies. However, the Random Forest algorithm’s performance is not
affected by this factor. The advantage of RF on the Threads data can be explained by
its property of training several weak classifiers on parts of the feature vectors only. By
this boosting strategy a usually undesirable combination of relatively long feature vectors
but few training observations can be tackled, holding for the Threads data that due to its
extreme skewedness (cf. Table 2.3) shrunk down to only 420 datapoints after our class
balancing technique of resampling without replacement. Results indicate the benefit of
RF classifiers in such sparse data cases.

The good performance of NC on the much larger amount of data in iPosts is in line
with the corpus statistics reported in section 2.2.3, implying a reasonably small amount of
class overlap. The classes are thus relatively well represented by their centroids, which is
exploited by the NC classifier. However, as illustrated in Figures 2.2 and 2.3, the majority
of feature distributions are generally better separated for ENT and UNK, while CON in
its mid position shows more overlap to both other classes and is thus overall a less distinct
category.

2.2.5 Conclusions and Future Work

The detection of contradiction and disagreement in microposts supplies important cues
to factuality and veracity assessment, and is a central task in computational journalism.
We developed classifiers in a uniform, general inference framework that differentiates two
tasks based on contextual proximity of the two posts to be assessed, and if the claim target
may or may not be omitted in their content. We utilized simple text similarity metrics that
proved to be a good basis for contradiction classification.
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Text similarity was measured in terms of vocabulary and token sequence overlap. To
derive the latter, local alignment turned out to be a valuable tool: as opposed to standard
global alignment (Wagner and Fischer, 1974), it can account for crossing dependencies
and thus for varying sequential order of information structure in entailing text pairs, e.g. in
”the cat chased the mouse” and ”the mouse was chased by the cat”, which are differently
structured into topic and comment. We expect contradictory content to exhibit similar
trends in variation with respect to content unit order – especially in the Threads scenario,
where entailment inferred from a reply can become the topic of a subsequent replying
tweet. Since local alignment can resolve such word order differences, it is able to preserve
text similarity of entailing tweet pairs, which is reflected in the relative laProp boxplot
heights in Figures 2.2 and 2.3.

We have run leave-one-event-out evaluation separately on the independent posts data
and on the conversational threads data, which allowed us to compare performances on
collections originating from the same genre and platform, but on content where claim
targets in the test data are different from the targets in the training data. Our obtained gen-
eralization performance over unseen events turns out to be in line with previous reports.
Via downsampling, we achieved a balanced performance on both tasks across the three
RTE classes; however, in line with previous work, even in this setup the overall perfor-
mance on contradiction is the lowest, whereas detecting the lack of contradiction can be
achieved with much better performance in both contradiction scenarios.
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Figure 2.4: Test F1 scores for the rumor classifier, on each .

2.3 Rumour Classification

The rumor classifier was presented in (Lukasik et al., 2015a), Chapter 4 and then improved
and extended in (Tolosi et al., 2016). A machine learning model consisting of a decision
tree trained on the complete Journalism dataset (Zubiaga et al., 2015a) was developed
for the purpose of inferring whether a Twitter thread is a rumor or not. The model is
language independent, meaning that it does not use language-specific features and it is
context independent, meaning that it does not wait for enough tweets to accumulate on a
certain event in order to collect context-based features.

Our evaluation followed a leave-one-topic-out approach, namely we trained on all
but one topic (eg. we trained on all but CharlieHebdo tweets) and tested on the left-out
topic. The average F1 score over all topics was 0.65, a rather good performance for a
language-agnostic and context-agnostic classifier. The performance is comparable to the
context-independent baseline reported in (Qazvinian et al., 2011).

Figure 2.4 shows the F1 measure for each of the left-out topics, where on the x-axis we
represented the probability cutoff at which non-rumor vs. rumor classification is decided.
This probability is the direct output of the decision tree model. We observed that there
is a large variation in performance over the different topics, suggesting that the model is
domain dependent. We described topic-dependent biases in detail in (Tolosi et al., 2016)
and how they influence model performance.
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text position

Birmingham Children’s hospital has been attacked. F***ing mo-
rons. #UKRiots

support

Girlfriend has just called her ward in Birmingham Children’s Hos-
pital & there’s no sign of any trouble #Birminghamriots

deny

Birmingham children’s hospital guarded by police? Really? Who
would target a childrens hospital #disgusting #Birminghamriots

question

Table 2.6: Tweets on a rumour about hospital being attacked during 2011 England Riots.

2.4 Rumour Stance Classification

As detailed in (Lukasik et al., 2015a), we carry out tweet-level stance classification au-
tomatically, in order to assist in (near) real-time rumour monitoring by journalists and
authorities (Procter et al., 2013). This information is used as an important feature in
veracity classification, as detailed in Deliverable D4.3.2.

In this deliverable we evaluate tweet-level stance classification on unseen rumours,
based on a training set of other already annotated rumours. The experiments here go
beyond those reported in the earlier Deliverable D6.2.1.

We apply Gaussian Processes and multi-task learning methods, following the problem
formulation introduced in Lukasik et al. (2015a), which we also describe next.

2.4.1 Problem formulation

Let R be a set of rumours, each of which consists of tweets discussing it, ∀r∈R Tr =
{tr1, · · · , trrn}. T = ∪r∈RTr is the complete set of tweets from all rumours. Each tweet
is classified as supporting, denying or questioning with respect to its rumour: y(ti) ∈
{s, d, q}.

We formulate the problem in two different settings. First, we consider the Leave One
Out (LOO) setting, which means that for each rumour r ∈ R, we construct the test set
equal to Tr and the training set equal to T \ Tr. This is the most challenging scenario,
where the test set contains an entirely unseen rumour.

The second setting is Leave Part Out (LPO). In this formulation, a very small number
of initial tweets from the target rumour is added to the training set {tr1, · · · , trrk}. This
scenario becomes applicable typically soon after a rumour breaks out and journalists have
started monitoring and analysing the related tweet stream. The experimental section in-
vestigates how the number of initial training tweets influences classification performance
on a fixed test set, namely: {trrl , · · · , t

r
rn}, l > k.
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The tweet-level stance classification problem here assumes that tweets from the train-
ing set are already labelled with the rumour discussed and the attitude expressed towards
that. This information can be acquired either via manual annotation as part of expert anal-
ysis, as is the case with our dataset, or automatically, e.g. using pattern-based rumour
detection Zhao et al. (2015). Our method is then used to classify the stance expressed in
each new tweet from the test set.

2.4.2 Classifiers

Gaussian Processes for Classification

Gaussian Processes are a Bayesian non-parametric machine learning framework that has
been shown to work well for a range of NLP problems, often beating other state-of-the-
art methods Cohn and Specia (2013); Lampos et al. (2014); Beck et al. (2014); Preotiuc-
Pietro et al. (2015).

A Gaussian Process defines a prior over functions, which combined with the likeli-
hood of data points gives rise to a posterior over functions explaining the data. The key
concept is a kernel function, which specifies how outputs correlate as a function of the
input. Thus, from a practitioner’s point of view, a key step is to choose an appropriate
kernel function capturing the similarities between inputs.

We use Gaussian Processes as this probabilistic kernelised framework avoids the need
for expensive cross-validation for hyperparameter selection.17 Instead, the marginal like-
lihood of the data can be used for hyperparameter selection.

The central concept of Gaussian Process Classification (GPC; Rasmussen and
Williams (2005)) is a latent function f over inputs x: f(x) ∼ GP(m(x), k(x,x′)), where
m is the mean function, assumed to be 0 and k is the kernel function, specifying the de-
gree to which the outputs covary as a function of the inputs. We use a linear kernel,
k(x,x′) = σ2x>x′. The latent function is then mapped by the probit function Φ(f) into
the range [0, 1], such that the resulting value can be interpreted as p(y = 1|x).

The GPC posterior is calculated as

p(f ∗|X,y,x∗) =

∫
p(f ∗|X,x∗, f)

p(y|f)p(f)
p(y|X)

df ,

where p(y|f) =
n∏

j=1

Φ(fj)
yj(1 − Φ(fj))

1−yj is the Bernoulli likelihood of class y. After

calculating the above posterior from the training data, this is used in prediction, i.e.,

p(y∗=1|X,y,x∗)=

∫
Φ (f∗) p (f∗|X,y,x∗) df∗ .

17There exist frequentist kernel methods, such as SVMs, which additionally require extensive heldout
parameter tuning.
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The above integrals are intractable and approximation techniques are required to solve
them. There exist various methods to deal with calculating the posterior; here we use
Expectation Propagation (EP; Minka and Lafferty (2002)). In EP, the posterior is ap-
proximated by a fully factorised distribution, where each component is assumed to be an
unnormalised Gaussian.

In order to conduct multi-class classification, we perform a one-vs-all classification
for each label and then assign the one with the highest likelihood, amongst the three (sup-
porting, denying, questioning). We choose this method due to interpretability of results,
similar to recent work on occupational class classification Preotiuc-Pietro et al. (2015).

Intrinsic Coregionalisation Model In the Leave-Part-Out (LPO) setting initial labelled
tweets from the target rumour are observed as well, as opposed to the Leave-One-Out
(LOO) setting. In the case of LPO, we propose to weigh the importance of tweets from
the reference rumours depending on how similar their characteristics are to the tweets
from the target rumour available for training. To handle this with GPC, we use a multiple
output model based on the Intrinsic Coregionalisation Model (ICM; Álvarez et al. (2012)).
This model has already been applied successfully to NLP regression problems Beck et al.
(2014) and it can also be applied to classification ones. ICM parametrizes the kernel by
a matrix which represents the extent of covariance between pairs of tasks. The complete
kernel takes form of

k((x, d), (x′, d′)) = kdata(x,x
′)Bd,d′ ,

where B is a square coregionalisation matrix, d and d′ denote the tasks of the two
inputs and kdata is a kernel for comparing inputs x and x′ (here, linear). We parametrize
the coregionalisation matrix B = κI + vvT , where v specifies the correlation between
tasks and the vector κ controls the extent of task independence. Note that in case of LOO
setting this model does not provide useful information, since no target rumour data is
available to estimate similarity to other rumours.

Hyperparameter selection We tune hyperparameters v, κ and σ2 by maximizing evi-
dence of the model p(y|X), thus having no need for a validation set.

Methods We consider GPs in three different settings, varying in what data the model
is trained on and what kernel it uses. The first setting (denoted GP) considers only target
rumour data for training. The second (GPPooled) additionally considers tweets from
reference rumours (i.e. other than the target rumour). The third setting is GPICM, where
an ICM kernel is used to weight influence from tweets from reference rumours.

Baselines

To assess and compare the efficiency of Gaussian Processes for rumour stance classifica-
tion, we also experimented with five more baseline classifiers, all of which were imple-
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mented using the scikit Python package (Pedregosa et al., 2011): (1) majority classifier,
which is a naive classifier that labels all the instances in the test set with the most com-
mon class in the training set, (2) logistic regression (MaxEnt), (3) support vector machines
(SVM), (4) naive bayes (NB) and (5) random forest (RF). The selection of these baselines
is in line with the classifiers used in recent research on stance classification (Zeng et al.,
2016), who found that random forests, followed by logistic regression, performed best.

2.4.3 Datasets

The PHEME dataset includes tweets associated with the following five events:

• Ferguson unrest: Citizens of Ferguson in Michigan, USA, protested after the fatal
shooting of an 18-year-old African American, Michael Brown, by a white police
officer on August 9, 2014.

• Ottawa shooting: Shootings occurred on Ottawa’s Parliament Hill in Canada, re-
sulting in the death of a Canadian soldier on October 22, 2014.

• Sydney siege: A gunman held as hostages ten customers and eight employees of a
Lindt chocolate café located at Martin Place in Sydney, Australia, on December 15,
2014.

• Charlie Hebdo shooting: Two brothers forced their way into the offices of the
French satirical weekly newspaper Charlie Hebdo in Paris, killing 11 people and
wounding 11 more, on January 7, 2015.

• Germanwings plane crash: A passenger plane from Barcelona to Düsseldorf
crashed in the French Alps on March 24, 2015, killing all passengers and crew
on board. The plane was ultimately found to have been deliberately crashed by the
co-pilot of the plane.

In this case, we perform 5-fold cross-validation, having four events in the training set
and the remaining event in the test set for each fold.

2.4.4 Features

We conducted a series of preprocessing steps in order to address data sparsity. All words
were converted to lowercase; stopwords have been removed18; all emoticons were re-
placed by words19; and stemming was performed. In addition, multiple occurrences of a
character were replaced with a double occurrence (Agarwal et al., 2011), to correct for

18We removed stopwords using the English list from Python’s NLTK package.
19We used the dictionary from: http://bit.ly/1rX1Hdk and extended it with: :o, : |, =/, :s, :S, :p.
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Table 2.7: Counts of tweets with supporting, denying or questioning labels in each event
collection on the PHEME dataset.

Dataset Rumours Supporting Denying Questioning

Ottawa shooting 58 161 76 63
Ferguson riots 46 192 82 94
Charlie Hebdo 74 235 56 51
Germanwings crash 68 67 12 28
Sydney siege 71 222 89 99

Total 287 877 315 335

misspellings and lengthenings, e.g., looool. All punctuation was also removed, except for
., ! and ?, which we hypothesize to be important for expressing emotion. Lastly, user-
names were removed as they tend to be rumour-specific, i.e., very few users comment on
more than one rumour.

After pre-processing the text data, we use either the resulting bag of words (BOW)
feature representation and replace all words with their Brown cluster ids (Brown).
Brown clustering is a hard hierarchical clustering method (Liang, 2005b; Derczynski and
Chester, 2016). It clusters words based on maximizing the probability of the words under
the bigram language model, where words are generated based on their clusters. In pre-
vious work it has been shown that Brown clusters yield better performance than directly
using the BOW features (Lukasik et al., 2015b).

In our experiments, the clusters used were obtained using 1000 clusters acquired from
a large scale Twitter corpus (Owoputi et al., 2013), from which we can learn Brown clus-
ters aimed at representing a generalisable Twitter vocabulary. Retweets are removed from
the training set to prevent bias (Llewellyn et al., 2014). More details on the Brown clusters
that we used as well as the words that are part of each cluster are available online20.

During the experimentation process, we also tested additional features, including the
use of the bag of words instead of the Brown clusters, as well as using word embeddings
trained from the training sets (Mikolov et al., 2013). However, results turned out to be
substantially poorer than those we obtained with the Brown clusters. We conjecture that
this was due to the little data available to train the word embeddings; further exploring use
of word embeddings trained from larger training datasets is left future work. In order to
focus on our main objective of proving the effectiveness of a multi-task learning approach,
as well as for clarity purposes, since the number of approaches to show in the figures
increases if we also consider the BOW features, we only show results for the classifiers
relying on Brown clusters as features.

20http://www.cs.cmu.edu/ ark/TweetNLP/cluster viewer.html
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2.4.5 Evaluation Measures

Accuracy is often deemed a suitable evaluation measure to assess the performance of a
classifier on a multi-class classification task. However, the classes are clearly imbalanced
in our case, with varying tendencies towards one of the classes in each of the rumours.
We argue that in these scenarios the sole evaluation based on accuracy is insufficient,
and further measurement is needed to account for category imbalance. This is especially
necessary in our case, as a classifier that always predicts the majority class in an imbal-
anced dataset will achieve high accuracy, even if the classifier is useless in practice. To
tackle this, we use both micro-averaged and macro-averaged F1 scores. Note that the
micro-averaged F1 score is equivalent to the well-known accuracy measure, while the
macro-averaged F1 score complements it by measuring performance assigning the same
weight to each category.

Both of the measures rely on precision (Equation 2.5) and recall (Equation 2.6) to
compute the final F1 score.

Precisionk =
tpk

tpk + fpk
(2.5)

Recallk =
tpk

tpk + fnk

(2.6)

where tpk (true positives) refer to the number of instances correctly classified in class
k, fpk is the number of instances incorrectly classified in class k, and fnk is the number
of instances that actually belong to class k but were not classified as such.

The above equations can be used to compute precision and recall for a specific class.
Precision and recall for all the classes in a problem with c classes are computed differently
if they are microaveraged (see Equations 2.7 and 2.8) or macroaveraged (see Equations
2.9 and 2.10).

Precisionmicro =

∑c
k=1 tpk∑c

k=1 tpk +
∑c

k=1 fpk
(2.7)

Recallmicro =

∑c
k=1 tpk∑c

k=1 tpk +
∑c

k=1 fnk

(2.8)

Precisionmacro =

∑c
k=1 Precisionk

c
(2.9)

Recallmacro =

∑c
k=1 Recallk

c
(2.10)
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After computing microaveraged and macroveraged precision and recall, the final F1
score is computed in the same way, i.e., calculating the harmonic mean of the precision
and recall in question (see Equation 2.11).

F1 =
2× Precision× Recall

Precision + Recall
(2.11)

After computing the F1 score for each fold, we compute the micro-averaged score
across folds.

2.4.6 Results

First, we look at the results on each dataset separately. Then we complement the analysis
by aggregating the results from both datasets, which leads to further understanding the
performance of our classifiers on rumour stance classification.

Comparison of Classifiers

We show the results for the LOO and LPO settings in the same figure, distinguished by the
training size displayed in the X axis. In all the cases, labelled tweets from the remainder
of the rumours (rumours other than the test/targer rumour) are used for training, and hence
the training size shown in the X axis is in addition to those. Note that the training size
refers to the number of labelled instances that the classifier is making use of from the
target rumour. Thus, a training size of 0 indicates the LOO setting, while training sizes
from 10 to 50 pertain to the LPO setting.

Figure 2.5 and Table 2.8 show how micro-averaged and macro-averaged F1 scores
for the England riots dataset change as the number of tweets from the target rumour
used for training increases. We observe that, as initially expected, the performance of
most of the methods improves as the number of labelled training instances from the target
rumour increases. This increase is especially remarkable with the GP-ICM method, which
gradually increases after having as few as 10 training instances. GP-ICM’s performance
keeps improving as the number of training instances approaches 5021 Two aspects stand
out from analysing GP-ICM’s performance:

• It performs poorly in terms of micro-averaged F1 when no labelled instances from
the target rumour are used. However, it makes very effective use of the labelled
training instances, overtaking the rest of the approaches and achieving the best re-
sults. This proves the ability of GP-ICM to make the most of the labelled instances
from the target rumour, which the rest of the approaches struggle with.

21Note that 50 tweets represent, on average, less than 7% of the whole rumour, with the rest of the rumour
yet to be observed.
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Figure 2.5: Micro-F1 and Macro-F1 scores for different methods versus the size of the
target rumour used for training in the LPO setting on the England riots dataset. The test
set is fixed to all but the first 50 tweets of the target rumour.

• Irrespective of the number of labelled instances, GP-ICM is robust when evaluated
in terms of macro-averaged F1. This means that GP-ICM is managing to determine
the distribution of classes effectively, assigning labels to instances in the test set in
a way that is better distributed than the rest of the classifier.

Despite the saliency of GP-ICM, we notice that two other baseline approaches, namely
MaxEnt and RF, achieve competitive results that are above the rest of the baselines, but
still perform worse than GP-ICM.

Table 2.8: Micro-F1 and Macro-F1 scores for different methods on the England riots
dataset.

Macro-F1 Micro-F1

0 10 20 30 40 50 0 10 20 30 40 50

Majority 0.294 0.294 0.294 0.294 0.294 0.294 0.79 0.789 0.789 0.788 0.788 0.788
GP 0.355 0.371 0.371 0.385 0.416 0.789 0.723 0.735 0.736 0.769
GP-ICM 0.493 0.586 0.7 0.657 0.677 0.687 0.584 0.753 0.849 0.83 0.837 0.846
MaxEnt 0.508 0.608 0.631 0.638 0.658 0.668 0.629 0.753 0.773 0.781 0.791 0.795
NB 0.329 0.471 0.485 0.494 0.498 0.507 0.485 0.701 0.707 0.713 0.716 0.72
SVM 0.344 0.345 0.34 0.35 0.35 0.35 0.79 0.793 0.795 0.797 0.798 0.8
RF 0.424 0.594 0.543 0.55 0.656 0.576 0.672 0.792 0.794 0.781 0.843 0.802

The results from the PHEME dataset are shown in Figure 2.6 and Table 2.9. Overall,
we can observe that results are lower in this case than they were for the riots dataset.
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The reason for this can be attributed to the following two observations: on the one hand,
each fold pertaining to a different event in the PHEME dataset means that the classifier
encounters a new event in the classification, where it will likely find new vocabulary,
which may be more difficult to classify; on the other hand, the PHEME dataset is more
prominently composed of tweets that are replying to others, which are likely shorter and
less descriptive on their own and hence more difficult to get meaningful features from.
Despite the additional difficulty in this dataset, we are interested in exploring if the same
trend holds across classifiers, from which we can generalise the analysis to different types
of classifiers.

One striking difference with respect to the results from the riots dataset is that, in
this case, the classifiers, including GP-ICM, are not gaining as much from the inclusion
of labelled instances from the target rumour. This is likely due to the heterogeneity of
each of the events in the PHEME dataset. Here a diverse set of rumourous newsworthy
pieces of information are discussed pertaining to the selected events as they unfold. By
contrast, each rumour in the riots dataset is more homogeneous, as each rumour focuses
on a specific story.

Interestingly, when we compare the performance of different classifiers, we observe
that GP-ICM again outperforms the rest of the approaches, both in terms of micro-
averaged and macro-averaged F1 scores. While the micro-averaged F1 score does not
increase as the number of training instances increases, we can see a slight improvement
in terms of macro-averaged F1. This improvement suggests that GP-ICM does still take
advantage of the labelled training instances to boost performance, in this case by better
distributing the predicted labels.

Again, as we observed in the case of the riots dataset, two baselines stand out, MaxEnt
and RF. They are very close to the performance of GP-ICM for the PHEME dataset, event
outperforming it in a few occasions. In the following subsection we take a closer look at
the differences among the three classifiers.

Table 2.9: Micro-F1 and Macro-F1 scores for different methods on the PHEME dataset.

Macro-F1 Micro-F1

0 10 20 30 40 50 0 10 20 30 40 50

Majority 0.243 0.242 0.241 0.24 0.24 0.24 0.574 0.569 0.566 0.562 0.561 0.561
GP 0.436 0.494 0.497 0.52 0.515 0.555 0.587 0.617 0.612 0.613
GP-ICM 0.576 0.572 0.607 0.584 0.601 0.597 0.679 0.655 0.669 0.664 0.675 0.674
MaxEnt 0.577 0.576 0.583 0.583 0.579 0.577 0.66 0.655 0.657 0.654 0.653 0.65
NB 0.355 0.352 0.345 0.345 0.345 0.343 0.371 0.373 0.366 0.363 0.363 0.358
SVM 0.249 0.25 0.249 0.25 0.246 0.247 0.568 0.563 0.561 0.556 0.555 0.554
RF 0.556 0.578 0.579 0.58 0.579 0.577 0.657 0.668 0.667 0.667 0.668 0.663
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Figure 2.6: Micro-F1 and Macro-F1 scores for different methods versus the size of the
target rumour used for training in the LPO setting on the PHEME dataset. The test set is
fixed to all but the first 50 tweets of the target rumour.

Analysing the Performance of the Best-Performing Classifiers

We delve into the results of the best-performing classifiers, namely GP-ICM, MaxEnt
and RF, looking at their per-class performance. This will help us understand when they
perform well and where it is that GP-ICM stands out achieving the best results.

Tables 2.10 and 2.11 show per-class F1 measures for the aforementioned three best-
performing classifiers for the England riots dataset and the PHEME dataset, respectively.
They also show statistics of the mis-classifications that the classifiers made, in the form
of percentage of deviations towards the other classes.

Looking at the per-class performance analysis, we observe that the performance of
GP-ICM varies when we look into Precision and Recall. Still, in all the dataset-class pairs,
GP-ICM performs best in terms of either Precision or Recall, even though never in both.
Moreover, it is generally the best in terms of F1, achieving the best Precision and Recall.
The only exception is with MaxEnt classifying questioning tweets more accurately in
terms of F1 for the England riots.

When we look at the deviations, we see that all the classifiers suffer from the datasets
being imbalanced towards supporting tweets. This results in all classifiers classifying
numerous instances as supporting, while they are actually denying or questioning. This is
a known problem in rumour diffusion, as previous studies have found that people barely
deny or question rumours but generally tend to support them irrespective of their actual
veracity value (Zubiaga et al., 2016). While we have found that GP-ICM can tackle the
imbalance issue quite effectively and better than other classifiers, this caveat posits the
need for further research in dealing with the striking majority of supporting tweets in the
context of rumours in social media.
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Table 2.10: Per-class precision, recall and F1 scores for the best-performing classifiers on
the England riots dataset.

Class Classifier Performance Deviations

P R F1 S D Q

supporting (S)
GP-ICM 0.887 0.931 0.909 — 0.86% 6.03%
MaxEnt 0.926 0.818 0.869 — 11.60% 6.56%
RF 0.859 0.914 0.885 — 1.21% 7.41%

denying (D)
GP-ICM 0.862 0.483 0.619 49.52% — 2.22%
MaxEnt 0.500 0.739 0.597 22.69% — 3.41%
RF 0.696 0.311 0.430 67.51% — 1.43%

questioning (Q)
GP-ICM 0.478 0.608 0.535 34.28% 4.92% —
MaxEnt 0.461 0.647 0.538 29.48% 5.78% —
RF 0.367 0.472 0.413 42.00% 10.79% —

2.4.7 Discussion

Experimentation with two different approaches based on Gaussian Processes (GP and
GP-ICM) and comparison with respect to a set of competitive baselines over two rumour
datasets enables us to gain generalisable insight on rumour stance classification on Twitter.
This is reinforced by the fact that the two datasets are very different from each other. The
first dataset, collected during the England riots in 2011, is a single event that we have
split into folds, each fold belonging to a separate rumour within the event; hence, all the
rumours are part of the same event. The second dataset, collected within the PHEME
project, includes tweets for a set of five newsworthy events, where each event has been
assigned a separate fold; therefore, the classifier needs to learn from four events and test
on a new, unknown event, which has proven more challenging.

Results are generally consistent across datasets, which enables us to generalise con-
clusions well. We observe that while GP itself does not suffice to achieve competitive
results, GP-ICM does instead help boost the performance of the classifier substantially to
even outperform the rest of the baselines in the majority of the cases.

GP-ICM has proven to consistently perform well in both datasets, despite their very
different characteristics, being competitive not only in terms of micro-averaged F1, but
also in terms of macro-averaged F1. GP-ICM manages to balance the varying class dis-
tributions effectively, showing that its performance is above the rest of the baselines in
accurately determining the distribution of classes. This is very important in this task of
rumour stance classification, owing to the fact that even if a classifier that is 100% accu-
rate is unlikely, a classifier that accurately guesses the overall distribution of classes can
be of great help. If a classifier makes a good estimation of the number of denials in an
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Table 2.11: Per-class precision, recall and F1 scores for the best-performing classifiers on
the PHEME dataset.

Class Classifier Performance Deviations

P R F1 S D Q

supporting (S)
GP-ICM 0.731 0.825 0.776 — 7.12% 10.34%
MaxEnt 0.715 0.814 0.761 — 12.08% 6.55%
RF 0.696 0.860 0.770 — 7.42% 6.55%

denying (D)
GP-ICM 0.540 0.313 0.396 50.36% — 18.35%
MaxEnt 0.427 0.325 0.369 50.54% — 16.97%
RF 0.494 0.285 0.362 58.48% — 13.00%

questioning (Q)
GP-ICM 0.594 0.647 0.619 27.21% 8.13% —
MaxEnt 0.635 0.569 0.600 29.54% 13.52% —
RF 0.657 0.552 0.600 34.16% 10.68% —

aggregated set of tweets, it can be useful to flag those potentially false rumours with high
level of confidence.

Another factor that stands out from GP-ICM is its capacity to perform well when
a few labelled instances of the target rumour are leveraged in the training phase. GP-
ICM effectively exploits the knowledge garnered from the few instances from the target
rumour, outperforming the rest of the baselines even when its performance was modest
when no labelled instances were used from the target rumour.

In light of these results, we deem GP-ICM the most competitive approach to use
when one can afford to get a few instances labelled from the target rumour. The labels
from the target rumour can be obtained in practice in different ways: (1) having someone
in-house (e.g. journalists monitoring breaking news stories) label a few instances prior
to running the classifier, (2) making use of resources for human computation such as
crowdsourcing platforms to outsource the labelling work, or (3) developing techniques
that will attempt to classify the first few instances, incorporating in the training set those
for which a classification with high level of confidence has been produced. The latter
presents an ambitious avenue for future work that could help alleviate the labelling task.

On the other hand, in the absence of labelled data from the target rumour, which is the
case of the LOO setting, the effectiveness of the GP-ICM classifier is not as prominent.
For this scenario, other classifiers such as MaxEnt and Random Forests have proven more
competitive and one could see them as better options. However, we do believe that the
remarkable difference that the reliance on the LPO setting produces is worth exploiting
where possible.
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in do-
main
tweets
(in %)

Ottawa
shooting

ferguson
riots

Charlie
Hebdo

Germanwings Sydney
siege

macro
mean
(Acc)

0 89.12 94.29 85.36 95.9 82.0 89.33
10 89.25 94.45 85.89 98.02 82.93 90.11
20 90.13 94.49 87.45 98.23 83.6 90.78
30 89.88 94.55 89.55 98.46 84.42 91.37
40 91.19 94.96 90.1 98.19 85.12 91.91
50 91.89 94.65 91.14 98.68 85.67 92.41
60 91.89 94.44 91.79 99.4 85.91 92.69

Table 2.12: Veracity classification results in accuracy obtained using the instance based
learning method (IBk). Results are obtained without the stance feature. The first line
entails the majority voting results.

2.5 Rumour Veracity Classification

Unlike the previous stance classification task, rumour veracity classification aims to verify
whether the rumour is likely to be true or false. In the deliverable D4.3.2 we described
our approach to veracity classification in detail. Here in this section we aim to provide a
summary of our approach and its results but also include our last activities which differ
from what has been reported in D4.3.2.

In D4.3.2 we extracted 35 feature types such as bag of words, brown clusters, regular
expressions, sentiment, etc. The features have been fed to the learning algorithm to do the
classification.

We investigated various classification methods including Support Vector Machines
(SVM), J48 Tree, Bayes, Random Forest and Instance Based Learning. Our experiments
have been performed on the PHEME rumour data set. On this data set the best perform-
ing system is the Instance Based Learning approach (89% accuracy) and the least one
the SVM classifier (71%). Thus we reported detailed results using the Instance Based
Learning method. As summary of these results are shown in Table 2.12.

From the results we can see that the Instance Based Learning (IBk) method achieves
around 89% to 92% accuracy. The first figure is obtained using training data that com-
prises all the rumours but the testing one whereas the second figure is obtained using all
the rumours plus 60% of the testing instances as the training data. Accuracy may be bi-
ased when the data is unbalanced in terms of positive (true) and negative (false) instances.
Thus we also performed F1-measure. For both 0% and 60% settings the F1-measure
results are around 90% and 93% respectively.

These experiments have been performed (1) on tweet level and (2) allowing some data
from the same event within the training process. The point (1) means that each tweet is
treated indepently and its veracity is assessed in isolation without taking into its rumour
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context. Certainly this is a limitation and thus we aimed to adress this. Second point (2)
involves more making the classifier not to see anything that is related to the same evant.
Note an event can have several rumours. In the previous setting we regarded rumours as
isolated units and trained on n-1 rumours and tested on the nth rumour. Now we train on
rumours of n-1 events and test on rumours of the nth event.

The current devolopments thus invovle: a rumour level veracity classification adress-
ing (1) and training and testing on rumours of an entire event. In the following we give
more details about the recent activities.

2.5.1 Feature Extraction

In the deliverable D4.3.2 we described 35 different feature types. These features are
extracted for each tweet, i.e. tweet level. For rumour level classification we continue
performing the tweet level feature extraction using the same feature types. However,
unlike previously we merge the feature values of all features accross all tweets22 within the
same rumour to form rumour level feature extraction. Each feature is treated as numeric
and for combining the different values of each feature we perform a summation over all
the values.

2.5.2 Results and Packaging

Similar to the experiments performed in the deliverable D4.3.2 we continued using In-
stance Based Learning for classification purpose. The accuracy result on the same data
used in D4.3.2 is 73.72%. On top of this data we added more data23 and re-run the exper-
iments. First we added around 75 rumours/non-rumours for each event. This results in
75.7% accuracy. We continued enriching the data to include 100 rumours/non-rumours.
This resulted in 77.09% accuracy. Interestingly adding more data did not add further
value to the results. Same was true when less than 75 rumours/non-rumours were added
into the training data.

We packaged the new classifier as GATE plugin. The plugin is aware of the dynamic
nature of incoming tweets. In the pipeline each incoming tweet is clustered based on its
rumour. The veracity classifier listens to these new incoming tweets and extracts from
each new tweet its rumour information. Once it knows the rumour id of the new tweet it
checks whether there have been any previous tweets about that rumour. If yes it merges
the new tweet with those previous tweets and performs feature value merging. Based on
the current merged feature values the classifier performs veracity classification on the new
tweet. Note that the veracity class of the new tweet might be different from what has been

22Actually we obtained best performances when we disregarded the first 20% of the tweets and performed
the feature merging on the recent 80% of tweets.

23https://figshare.com/articles/PHEME_dataset_of_rumours_and_
non-rumours/4010619
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said about the ealier tweets within the same rumour. It is important to treat the rumour
class information of the new/last tweet as the rumour class for the entire rumour. It is
basically an up-date.
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Integration Evaluation

3.1 Introduction

The PHEME Integrated Framework is meant to scale. In order to ensure the scalability of
the solution the project is on the one hand improving the performance and scalability of
the different individual components as reported in previous sections. On the other hand,
from the integration perspective, the project is following a global integration strategy
to ensure the performance and scalability of the overall system. This global integration
strategy presents project-wide approaches orthogonal to the individual scaling plans and
common for most technical components. The focus is on integration aspects to provide
an infrastructure to integrate components while enabling big data scaling techniques, such
as scaling up, scaling out, parallelisation, etc. This global integration strategy takes into
account limits of individual components to align them into a common plan.

From the integration and scalability perspectives, pipelines should be able to increase
the throughput and decrease the latency as much as possible. In order to do that, enabling
parallelisation means processing of several inputs coming from components in a pipeline
with other identical components that work in parallel. In an optimal scenario, it is simply
adding more processing units for the same components that work slower compared to
other components in a pipeline. More processing units can be provided to components by
scaling horizontally or vertically. Scaling horizontally is achieved by adding more nodes
(computers) to a system, while vertical scaling can be achieved by running the whole
pipeline on a faster machine.

Within PHEME project partners implemented a big data IT Infrastructure using a
physical Infrastructure and a virtualization layer in Sheffield premises. However, nothing
precludes to install PHEME in other cloud-based environment or scale-up or scale-ot the
system. The Sheffield setting comprises four different servers, one acting as head node
and two acting as working nodes. This infrastructure provides enough flexibility to be
virtualised and hosts the main components and the underlying software infrastructure
required for integration. This installation is used to showcase the project results and it is

42
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where the bulk of the work on integration has been done.

This big data infrastructure allows enough flexibility to achieve the necessary scalabil-
ity. For instance, new nodes could be added and the workload of the different components
and pipelines could be parallelised to improve the response time and avoid bottlenecks if
necessary. This has been tested in some particular scenarios. This means that although the
project has a limited budget in terms of infrastructure, nothing prevents achieving better
throughput in a potential commercial scenario by horizontally scaling the infrastructure.

3.1.1 Pipeline components performance measures

This section provides an overview on the performance of individual components of the
Pheme pipeline. The performance was measured for each component separately. There
are two principal metrics:

• latency – amount of time that each component adds to the processing of a single
tweet, that is: how much time each tweet spends in each component

• throughput (tweet rate) – maximum amount of tweets that can be processed by the
pipeline in a defined amount of time

The latency measures were performed without any pipeline load, by sending a single
tweet individually through each component. Then the process was repeated in order to
account for possible anomalies, etc. The result is a distribution of latencies for each
component. It is important that this measurement is repeated many times in order to
obtain reliable results by average over many cases. Then, average latencies does not
show a complete picture of how a component behaves. Latency and throughput very
often change in time. This is why we need also to show how components behave in worst
cases. For this reason it is very common also to include measures for 95 and 99 percentiles
latencies. With this information we know better what can we expect and what happens
in some specific corner cases, when unusual latencies occur, such as: garbage collector
pauses, some periodic processes that can slow down overall processing, etc.

Latency measures

Below we include charts and tables detailing performance measures for each individual
pipeline component. Language id on Figure 3.1 and Table 3.1, spacio-temporal entity
annotation on Figure 3.2 and Table 3.2, event clustering on Figure 3.3 and Table 3.3,
concept annotation on on Figure 3.4 and Table 3.4, SDQC on Figure 3.5 and Table 3.5
and veracity classification on Figure 3.6 and Table 3.6.
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Table 3.1: Latency measures for the language id component
Measure Latency
mean 0.009 s
median 0.008 s
.95 percentile 0.013 s
.99 percentile 0.014 s

Table 3.2: Latency measures for the spacio-temporal entity annotation component
Measure Latency
mean 0.010 s
median 0.010 s
.95 percentile 0.013 s
.99 percentile 0.013 s

Table 3.3: Latency measures for the event clustering component
Measure Latency
mean 0.05 s
median 0.07 s
.95 percentile 0.08 s
.99 percentile 0.09 s

Table 3.4: Latency measures for the concept annotation component
Measure Latency
mean 0.9 s
median 0.88 s
.95 percentile 1.12 s
.99 percentile 1.27 s

Table 3.5: Latency measures for the SDQC component
Measure Latency
mean 0.42 s
median 0.42 s
.95 percentile 0.43 s
.99 percentile 0.44 s

Table 3.6: Latency measures for the veracity classification component
Measure Latency
mean 0.11 s
median 0.11 s
.95 percentile 0.12 s
.99 percentile 0.14 s
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Figure 3.1: Distribution of latency times for the language id component

Throughput measures

Throughput on the other hand is measured by simulating full load of the pipeline at each
stage and analyzing the amount of output messages in time. This is done for each com-
ponent separately for a couple of minutes. Again, throughput can vary in time, so it is
important to provide not only average measures but also the lowest quantiles to get the
idea of the possible (although rare) ”worst-case” numbers. Table 3.7 shows and overview
of the throughput metrics of all components.

Table 3.7: My caption
Component Mean Median .10 percentile
lang id 550 tweets/s 550 tweets/s 500 tweets/s
spacio-temporal entities 37 tweets/s 37 tweets/s 11 tweets/s
event clustering 29.5 tweets/s 10 tweets/s 1 tweet/s
concept annotation 2.4 tweets/s 1 tweets/s 1 tweet/s
SDQC 2.5 tweets/s 1.5 tweets/s 1 tweet/s
Veracity 12 tweets/s 10 tweets/s 2 tweets/s
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Figure 3.2: Distribution of latency times for the spacio-temporal entity annotation com-
ponent

Overall pipeline metrics

The same measurements were performed with the whole integrated pipeline. Results for
both: latency and throughput are shown in the Figure 3.7

Capture responsiveness

No matter how much effort we put into lowering the latency of the Pheme pipeline, it is
important that the data that is fed to the pipeline is as recent as possible. While Twitter
provides streaming API that outputs data in a timely fashion, you can only use one stream
at the same time, which is not flexible enough for many use cases (especially for the
journalism dashboard). When we need to monitor more topics we need to rely on the
Search API, which works in a request/response manner. This way we can ”simulate”
the stream by pro-actively polling for new data every now and then and stream only the
newest updates. This however requires a good degree of fine tunning in order to find a
proper balance between the number of monitored events, how ”big” in terms of data those
events are, and still conforming to the Twitter API limits. ATOS Capture component was
improved in this aspect by lowering the average delay between twitter creation time and
the moment it is retrieved by Capture and streamed down the pipeline. Figure 3.8 shows
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Figure 3.3: Distribution of latency times for the event clustering component

Table 3.8: Latency measures for the language id component
Measure Delay
median 25 8 s
.95 percentile 55.1 s

the improvement of the overall latency in the process of tweets retrieval.

The measure of Capture latency is shown in Table 3.8. Note that using the Twitter
Search API the newest tweets are available after about 16 seconds (as measured by cre-
ation time).

3.1.2 Dealing with bursty data rates

While the capacity of the Pheme pipeline can be scaled to handle bigger traffic, sometimes
it is important to ensure proper responsiveness. Kafka broker natively provide means for
alleviating data peaks, by buffering topics. If data can not be processed instantly, it will
simply wait for the client to consume it. This is perfect situation to give consumers more
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Figure 3.4: Distribution of latency times for the concept annotation component

time to cope with bursty data. This situation however is not always desirable:

• Sometimes a data peak can occur and last for a long time - how long should we
maintain such data in the queues? Can we allow queues to grow infinitely?

• When we can not process data in a timely fashion, the queue grows. As the queue
grows, every new data coming into the pipeline has to wait until all previous data is
processed. This may be OK for long-term, batch processes, but is not suitable for
live, interactive work.

• Growing queues are increasing latency of the overall pipeline. One could imagine
a situation where a journalist need to research on a very recent topic, but need to
wait few hours until other bursty event is processed. His event might already be
irrelevant by that time.

Addressing those issues require a good deal of fine tuning and making trade-offs be-
tween latency and drop-rate. This is why we decided to configure the journalism pipeline
to favor low latency but allow message dropping at the same time, and medical pipeline
to reduce drop-rate but allow for higher latencies for bursty data.
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Figure 3.5: Distribution of latency times for the SDQC component
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Figure 3.6: Distribution of latency times for the veracity classification component

Figure 3.7: Distributions of performance metrics for the complete Pheme pipeline
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Figure 3.8: Capture latency improvement



Chapter 4

Conclusion

In this deliverable we presented evaluation studies performed in the second part of the
project, also building on the former version of this document: D6.2.1 Evaluation Report
– Interim Results. We report on 2 types of evaluation, the one dealing with particular
components, which are building blocks for the detection and classification of rumours, and
on the integration platform that has to make sure that the veracity computation is running
in a stable way and can also scale. For the latter, which using Kafka and the underlying
Capture infrastructure, we can report on good results, but also on different strategies to
be applied for different tasks. Those strategies require fine tuning and have to consider
trade-offs between latency and drop-rate, in order to obtain an optimal performances.
The integration platform fulfilled its main task, consisting in the delivery of the PHEME
Integrated Veracity Framework, which could be tested and run by the partners involved in
eh the two use cases of PHEME.

Besides this evaluation study on the integration platform, we presented also de-
tailed evaluation study of methods developed in the context of central components of
the PHEMEframework: Sub-Story detection, Entailment and Contradiction detection, Ru-
mour Classification and Rumour Stance Classification. In all cases, we could show ad-
equation of even improvements in comparison with former versions of the involved al-
gorithms or with respect to available gold standards or baselines. As the reader of this
document can see, the described algorithms and their results have been published in inter-
national workshops and conferences, stressing thus the interest of the community to the
results of PHEME, and also ensuring that our work can be-reused in other frameworks or
shared tasks.
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