
DELIVERABLE SUBMISSION SHEET

To: Susan Fraser (Project Officer)
 EUROPEAN COMMISSION
 Directorate-General Information Society and Media
 EUFO 1165A
 L-2920 Luxembourg

From:

Project acronym: PHEME Project number: 611233

Project manager: Kalina Bontcheva

Project coordinator The University of Sheffield (USFD)

The following deliverable:
Deliverable title: PHEME Integrated Veracity Framework - v 2.0

Deliverable number: D6.1.3

Deliverable date: 31 January 2017

Partners responsible: ATOS

Status: Public Restricted Confidential

is now complete. It is available for your inspection.
 Relevant descriptive documents are attached.

The deliverable is:
 a document
 a Website (URL:)
 software (...........................)
 an event
 other (Prototype)

Sent to Project Officer:
Susan.Fraser@ec.europa.eu

Sent to functional mail box:
CNECT-ICT-611233@ec.europa.eu

On date:
31 January 2017

mailto:Susan.Fraser@ec.europa.eu

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

1

FP7-ICT Strategic Targeted Research Project PHEME (No. 611233)
Computing Veracity Across Media, Languages, and Social Networks

D6.1.3 PHEME Integrated Veracity Framework - v 2.0

Tomás Pariente Lobo, Mateusz Radzimski (ATOS) / Kalina Bontcheva, Leon
Derczynski (USFD) / Georgi Georgiev, Ivelina Nicolova, Atanas Popov, Laura
Tolosi (ONTO) / Thierry Declerck, Piroska Lendvai (USAAR) / Arno Scharl

(MODUL) / Anna Kolliakou (KCL)

Abstract
FP7-ICT Strategic Targeted Research Project Pheme (No. 611233)
Deliverable D6.1.3 (WP 6)

This document and the associated software and running demos summarise the
activities carried out related to the data and software integration of PHEME

 Keyword list: Integration, PHEME architecture, acquisition framework

Nature: Prototype Dissemination: PU
Contractual date of delivery: 31/01/2017 Actual date of delivery: 31/01/2017
Reviewed By: Kalina Bontcheva
Web links:http://www.pheme.eu

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

2

PHEME Consortium

This document is part of the PHEME research project (No. 611233), partially funded by
the FP7-ICT Programme.

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP, UK
Tel: +44 114 222 1930
Fax: +44 114 222 1810
Contact person: Kalina Bontcheva
E-mail: K.Bontcheva@dcs.shef.ac.uk

Universitaet des Saarlandes
Language Technology Lab
Campus
D-66041 Saarbrücken
Germany
Contact person: Thierry Declerck
E-mail: declerck@dfki.de

MODUL University Vienna GMBH
Am Kahlenberg 1
1190 Wien
Austria
Contact person: Arno Scharl
E-mail: scharl@modul.ac.at

Ontotext AD
Polygraphia Office Center fl.4,
47A Tsarigradsko Shosse,
Sofia 1504, Bulgaria
Contact person: Georgi Georgiev
E-mail: georgiev@ontotext.com

ATOS Spain SA
Calle de Albarracin 25
28037 Madrid
Spain
Contact person: Tomás Pariente Lobo
E-mail: tomas.parientelobo@atos.net

King’s College London
Strand
WC2R 2LS London
United Kingdom
Contact person: Robert Stewart
E-mail: robert.stewart@kcl.ac.uk

iHub Ltd.
NGONG, Road Bishop Magua Building
4th floor
00200 Nairobi
Kenya
Contact person: Rob Baker
E-mail: robbaker@ushahidi.com

SwissInfo.ch
Giacomettistrasse 3
3000 Bern
Switzerland
Contact person: Peter Schibli
E-mail: Peter.Schibli@swissinfo.ch

The University of Warwick
Kirby Corner Road
University House
CV4 8UW Coventry
United Kingdom
Contact person: Rob Procter
E-mail: Rob.Procter@warwick.ac.uk

mailto:K.Bontcheva@dcs.shef.ac.uk
mailto:declerck@dfki.de
mailto:declerck@dfki.de
mailto:scharl@modul.ac.at
mailto:georgiev@ontotext.com
mailto:georgiev@ontotext.com
mailto:tomas.parientelobo@atos.net
mailto:robert.stewart@kcl.ac.uk
mailto:robbaker@ushahidi.com
mailto:Peter.Schibli@swissinfo.ch
mailto:Rob.Procter@warwick.ac.uk

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

3

Executive summary

This document describes and delivers the software associated with the final version of
the PHEME integrated framework. The document focuses on reporting on the data and
software integration aspects. The initial and intermediate integration versions of this
document were explained in the PHEME deliverable D6.1.1 (restricted) and D6.1.2
(public), while the initial evaluation was presented in the deliverable D6.2.1 and the
results of its final evaluation will be explained in D6.2.2.

One of the most challenging issues from the integration perspective is to enable
different components to work with streaming data in real time. Therefore, the
development of the software prototype has been conducted by making sure that the
system and all its components are able to fulfil the project requirements. These
requirements include processing social network data in a streaming fashion for real-
time rumour classification and detection, dealing with cross-language and cross-media
information, and providing timely results.

From the data perspective, the document reports on the pipelines and data flows as well
as in the components and repositories that allow PHEME to acquire, pre-process,
enrich, store and visualise social media data. The document describes how data from
different social networks (mainly Twitter and Reddit) and different languages (English,
German and Bulgarian) are processed and aggregated to take care of the challenging
cross-media and cross-language aspects tackled in Pheme.

From the software integration perspective, once the decision was made in the second
year of the project of using Apache Kafka as our main integration middleware, this year
witnessed several integration iterations of different components developed in the
technical work packages. In particular, the main effort has been directed towards the
integration of the components to create processing pipelines for the journalist (WP8)
and medical (WP7) use cases. The focus has been therefore on defining pipelines,
integrating components, identify issues and bottlenecks, facilitating component owners
an easy deployment of their components.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

4

Contents

Executive summary 3

Contents 4

Index of Figures 5

1 Relevance to PHEME 6

1.1. Purpose of this document 6

1.2. Relevance to project objectives 6

1.3. Relation to other work packages 6

1.4. Structure of the document 6

2 PHEME Veracity Framework Architecture and Integration Approach 8

2.1. Overview of the architecture 8

2.2. Software Integration approach 11

2.2.1. PHEME IT infrastructure 11

2.2.2. Integration using Apache Kafka 12

2.2.3. Other possible integration mechanisms 14

2.2.4. Scalability and performance 14

3 Data flow and repositories 16

3.1. Introduction 16

3.2. Data flow in PHEME 16

3.2.1. Data flow 16

3.2.2. Kafka message format guidelines 17

3.2.3. PHEME Knowledge Integration 19

3.3. Cross-media and cross-language data integration approach 22

3.3.1. Cross-media 22

3.3.1.1 Twitter data 22

3.3.1.2 Reddit data 23

3.3.2. Cross-language 24

4 Components and pipelines 25

4.1. Overview of the components 25

4.2. Integrated pipelines 44

4.2.1. Overview of the main processes and pipelines 44

4.2.2. Journalists’ pipeline 46

4.2.3. Medical pipeline 47

4.3. Pipeline monitor 47

5 Conclusion 50

6 Bibliography and references 51

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

5

7 Annex 1. Component descriptions 52

7.1. Data collection framework: Capture 52

7.1.1. Description 52

7.1.2. Technical Perspective 52

7.1.3. Enhancements of Capture done in PHME 53

7.1.4. Deployment Environment 54

7.1.5. Invocation guidelines 55

7.2. Knowledge repository: GraphDB 55

7.2.1. Description 55

7.2.2. Deployment Environment 55

7.2.3. Invocation Guidelines 55

7.3. Dashboard API 59

8 Annex 2. RDF properties of important PHEME concepts 62

8.1. RDF description of the PhemeMention concept type 62

8.2. RDF description of the UserAccount concept type 62

8.3. RDF description of the Tweet concept type 62

8.4. RDF description of the CrossMediaLink concept type 64

Index of Figures
Figure 1. PHEME Veracity Framework Functional blocks perspective........................ 8

Figure 2. PHEME Veracity Framework Architecture. .. 9

Figure 3. The publish-subscribe paradigm in Kafka .. 13

Figure 4. An example of a Kafka consumer reading from Twitter 14

Figure 5. Components for tweets enrichment and for GraphDB integration 20

Figure 6. Integration of LOD data with PHEME ontology ... 20

Figure 7. Journalist pipeline components .. 46

Figure 8. Medical pipeline components ... 47

Figure 9 Journalist pipeline monitor overview .. 48

Figure 10. Journalist pipeline monitor - Component usage timeline statistics 49

Figure 11. Medical pipeline monitor overview.. 49

Figure 12. Detailed overview of the Data Collection framework (Capture) 53

Figure 13. SPARQL query interface. ... 56

Figure 14. RDF query result set. .. 56

Figure 15. PHEME ontology navigation. .. 57

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

6

1 Relevance to PHEME

1.1. Purpose of this document
This document is a software deliverable. The purpose of the document is to provide an
overview of the architecture, data and software integration achievements of the PHEME
Integrated Framework. This document covers the following aspects:

● PHEME architecture and integration approach.
● Data Integration prototype.
● Software integration prototype.
● Conclusion
● Annexes containing a brief overview of the components integrated.

1.2. Relevance to project objectives
Data and software integration are key aspects of any project, and more in a data-
intensive project such as PHEME. Projects that do not pay attention to devise pragmatic
and clear integration plans are likely to fail to deliver sound common results, even if
the research and the separate components and tools developed within the project are of
very good quality. In consequence, project partners have been aware since the inception
of the project of the integration procedures and plans, encouraging all to participate
actively in the integration discussions.

Therefore, this work package provided in previous documents the integration
guidelines to the rest of the project partners to ensure that the data, components and
tools provided by all partners can work nicely together in the different aspects they
should interact. This deliverable reports on the final outcomes of the integration. It is a
software deliverable, so besides the document it delivers software and a set of working
prototypes which results can be accessed either via open software repositories (PHEME
GitHub repository) or the integrated prototypes delivered by the use case work
packages and dashboards (WP5, WP7 and WP8).

1.3. Relation to other work packages
As stated in the previous paragraphs, this deliverable describes the integration glue for
all the technical work done in the project. Therefore, it has relation to all of the technical
and use case work packages. It also has connections to the exploitation aspects, as the
PHEME integrated framework is one of the main exploitation outputs of the project and
its sustainability will depend heavily on how well the integration is done.

1.4. Structure of the document
The document is organised as follows:

● Section 1 gives a brief introduction, outlines the major purpose of the document
and explains its relevance to PHEME.

● Section 2 provides a general background of the PHEME architecture and the
approach followed for integration.

● Section 3 reports the data flow and repositories.
● Section 4 reports the software integration prototype.
● Section 5 concludes with consolidated findings so far and the next steps.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

7

● References are listed in section 6.
● Annexes with extra information about specific components and repositories are

given in section 7 and 8.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

8

2 PHEME Veracity Framework Architecture and Integration
Approach

2.1. Overview of the architecture
As originally devised, the PHEME Veracity Framework was designed to be able to
integrate the veracity intelligence tools and services developed in the rest of the
technical and use case work packages. The emphasis was on storing and processing
large volumes of historical data, coupled with real-time analysis of incoming new
content. A view representing the functional blocks in relation to the repositories is given
in Figure 1.

Figure 1. PHEME Veracity Framework Functional blocks perspective.

The figure above presents the main functional elements of the PHEME Veracity
Framework:

● The data value chain for veracity checking: At the top of the figure, the different
modules represent different steps in the collection, processing and analysis of
data. It comprises components for data acquisition from Social Media resources,
analytics (i.e. algorithms for cross-media and cross-language analysis,
Information Extraction, etc.), and detection and classification of rumours. This
is the core of the project and represents work done in most of the technical work
packages of the project (WP2, WP3, WP4 and WP6). This core analytical layer
was meant to be supported by stream and batch processing engines and service
or pipelining frameworks,

● The model preparation: It comprises all the steps and processes aiming at
annotate, train and evaluate the veracity models in PHEME. This layer is also
core to the preparation of the data and models and it is mainly reflected in the

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

9

technical work done in WP2. Therefore it is not the main subject of integration
work, but rather preparatory work for it.

● The usage layer: On the right hand side of the figure, it is the application
provided to the end users. According to the different use cases defined in the
project (WP7 and WP8), different applications can be built to provide adapted
user interfaces according to the specific use case requirements. The Application
Layer deals with the configuration of the user interface and the management of
the user interaction to dispatch the events towards the internal system (Service
Layer). The PHEME Visualization Dashboard (WP5) is in charge of displaying
different visualization perspectives to end users to understand how rumours
form, spread and die, among other interesting visualization paradigms. This
dashboard, although generic in nature, has been used in the scope of WP7 and
tailored for the medical domain, and as such integrated at the end of the medical
pipeline. On the other hand, a Journalist Dashboard has been developed WP8 to
take care of the specific visualization paradigms required by journalists. This
dashboard is also integrated at the end of the Journalist pipelines.

● The data persistence layer: This layer is in charge of the mechanisms and models
to store information. In PHEME, the main repository is the Knowledge
repository, where the processed and data processed in the pipelines containing
raw data and annotations added by the components in the pipelines is stored and
further enriched. There are other repositories used for different purposes, such
as raw data collection, annotated datasets, or even dashboard-specific
repositories for fast visualization. These extra repositories are integral part of
the architecture of the solution, but are not the main subject of integration.
Therefore, this document only gives a brief mention to them, focusing on the
knowledge repository and its interactions instead.

A high-level architectural diagram of the PHEME framework appears in Figure 2.

Figure 2. PHEME Veracity Framework Architecture.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

10

Figure 2 shows the reference architecture for PHEME. This figure is following closely
the blueprint provided for language technologies by the Coordination and Support
Action MLi (MLi Deliverable D2.1). MLi proposes a Reference Architecture divided
in two main axes:

● On the vertical axis “IT Value Chain” the value is created by providing more
abstract access to the system functionalities, starting from low-level
infrastructural services, through LT/MT/NLP domain-specific services until the
high-level workflows and LT marketplace services for support of the business
services and information and process integration within the Business Entity.

● On the horizontal “Language Value Chain” the value is created by combining
LT/MT/NLP services and components into more complex and higher level
features that fulfil requirements of the end user.

At first glance, it is clear that PHEME follows closely the MLi Hub reference
architecture. This has been done intentionally as common partners of the two projects
were interested in collaborating in these architectural aspects. In more detail, the
PHEME implementation shows the following:

IT Infrastructure

PHEME implements the IT Infrastructure of the MLi Hub following the same building
blocks. The Physical Infrastructure and Virtualization layer is not specified in the
diagram further, but it uses virtualised servers and several installations for different use
cases. Therefore, specific infrastructure providers can deploy PHEME in multiple
environments. During the project there are two separate Physical Infrastructure
instantiations, one in Sheffield that provides the main setup for hosting the integrated
pipelines for both use cases (WP7 and WP8), and a second one in KCL mainly for data
collection and analysis related to WP7 objectives.

One difference between the MLi Reference architecture and PHEME resides in the
storage layer. In PHEME, the social media data and the semantic knowledge base are
placed in the storage layer instead of the upper processing layer as proposed by MLi.
This decision was taken on purpose to separate storage from the processing framework,
although conceptually is very similar to the approach followed in the MLi Hub.
PHEME proposes NoSQL databases (HBase1) and indexed repositories (Solr) for the
raw data, while using a semantic database (GraphDB) as Knowledge Base. As a matter
of example, the HBase and Solr repositories have been switched-off on the Sheffield
infrastructure, as it was important not to duplicate storage but rather store the results of
the processed data in the Knowledge repository. However, in the KCL infrastructure it
was the other way around, as the objective was to use that data for internal annotation
and studies. We also have an instance in Sheffield to gather raw data for annotation
purpose that is only activated on demand. This gives an idea of the flexibility of the
architecture proposed. The architecture also provides Apache Kafka2, Apache Flink3
and Apache Hadoop4 as underlying streaming and batch processing engine and
integration mechanisms. In the final implementation, the decision was to rely heavily

1 http://hbase.apache.org/
2 http://Kafka.apache.org/
3 https://flink.apache.org/
4 http://hadoop.apache.org/

http://hbase.apache.org/

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

11

on Apache Kafka as the middleware and streaming backbone for messaging and
integration using its highly-scalable publish-subscription paradigm.

Language Value Chain

The Language Value Chain (LVC) in PHEME comprises all functional processes from
the collection of social media data to its analysis and visualization. It is composed of
processes and Language Technology components, services and sophisticated
algorithms for event detection, cross-language and cross-media linking, along with
training of veracity models for tumour detection and classification. The result of the
analysis made in the LVC is used by the use cases (digital journalism and health) and
visualised in dedicated dashboards. This can be done either by the visualization
dashboard subscribing to the streaming data coming from the pipelines or by querying
the data stored in the knowledge repository.

2.2. Software Integration approach
This section reports on the infrastructure used within the project life-span and the
software integration approach used to pipeline the components developed within the
project. Note that some components were not subject of integration, as they performed
auxiliary or autonomous tasks such as training, data annotation, etc. These components
have been developed in the scope of their respective work packages and have been
reported in other deliverables.

PHEME is a research project that aims to deliver a set of tools as integrated as possible
to push the state of the art in rumour and veracity detection. It was not the aim of the
project to deliver a near-to-market toolset. However, in the light of what has been
discussed so far and the attention raised in the market, within PHEME we paid huge
attention to provide an integration framework capable of delivering scalable pipelines
that could be potentially tailored for commercial scenarios. This means that the
integration approach has to be flexible, scalable and simple.

2.2.1. PHEME IT infrastructure
As hinted in the previous section, PHEME implements the IT Infrastructure using a
physical Infrastructure and a virtualization layer in a couple of installations for different
use cases. This is an example on how specific infrastructure providers can deploy
PHEME in multiple environments. Within the project there are two separate physical
infrastructure instantiations:

● Main PHEME deployment infrastructure in Sheffield: This infrastructure is
deployed on servers residing in Sheffield. It comprises four different servers,
one acting as head node and two acting as working nodes. This infrastructure
provides enough flexibility to be virtualised and hosts the main components and
the underlying software infrastructure required for integration. This installation
is used to showcase the project results and it is where the bulk of the work on
integration has been done.

● Secondary PHEME deployment infrastructure in KCL: KCL deployed a similar
infrastructure at the end of Y2 to test and showcase the results of their case
study. It is completely separated from the previous infrastructure and it is mainly
used for retrieving data for WP7 experiments.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

12

These two instantiations, especially the one in Sheffield, are examples of how the
PHEME Veracity Framework could be hosted and deployed. This big data
infrastructure allows enough flexibility to achieve the necessary scalability. For
instance, new nodes could be added and the workload of the different components and
pipelines could be parallelised to improve the response time and avoid bottlenecks if
necessary. This has been tested in some particular scenarios. This means that although
the project has a limited budget in terms of infrastructure, nothing prevents achieving
better throughput in a potential commercial scenario by horizontally scaling the
infrastructure.

At the end of the project, a new instantiation has been produced in OntoText premises
to be tailored for potential exploitation avenues.

2.2.2. Integration using Apache Kafka
PHEME components covered in this document need to be chained in a process in order
to accomplish certain tasks, such as language detection, text pre-processing, processing
in several languages, etc. These components are heterogeneous, developed by different
partners often using different programming languages (mainly Java and Python) and
sometimes even hosted remotely. These facts pose requirements to the integration
approach followed in the project. This real-time processing integration follows the
concept of pipelines. Pipelines allow the addition of multiple components in a process.

From the integration perspective, the main goal is to ensure that the whole system and
all its components are able to fulfil the project requirements of processing social
network data in a streaming fashion for real-time rumour classification and detection,
cross-language and cross-media and providing timely results. Some of the components
will perform other tasks by themselves, such as training the Machine Learning systems.
In these cases, integration with other components is not required, and therefore not
explained in detail in this document. Where needed, the integration approach should
allow an easy and loosely coupled integration and communication for batch processing.

For programming language independence, messaging systems support multiple
platforms and programming languages, which represent a clear solution to the
integration problem. There are many popular messaging systems, such as ZeroMQ5,
RabbitMQ6, Apache Flume7 and Apache Kafka among others. However, as explained
in PHEME deliverables D6.1.1 and D6.1.2, the Capture module provides the
infrastructure for messaging and several other integration points that PHEME may take
advantage of. Capture is built on top of a big data-enabled infrastructure that provides
batch and streaming processing engines. In particular Capture uses Apache Kafka pub-
sub mechanism for message exchange. This ability has been exploited during the
second year of the project as baseline for data and component integration for the
veracity framework.

Apache Kafka is a high-throughput publish/subscribe messaging system that provides
very handy features for real-time processing systems and it is frequently used to enable

5 http://zeromq.org/
6 https://www.rabbitmq.com/
7 https://flume.apache.org/

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

13

data pipelining. It is therefore an adequate approach to be used in the integration of the
PHEME real-time components. Kafka is used in PHEME as the main integration
middleware.

Kafka is designed to allow a single cluster to serve as the central data backbone for a
large organisation. It can be elastically and transparently expanded without downtime.
Data streams are partitioned and spread over a cluster of machines to allow data streams
larger than the capability of any single machine and to allow clusters of coordinated
consumers.

Apache Kafka differs from traditional messaging systems in that:

● It is designed as a very easy to scale out distributed system.
● It offers high throughput for both publishing and subscribing operations.
● It supports multi-subscribers and automatically balances the consumers during

failure.
● It persists messages on disk and thus can be used for batched consumption such

as ETL, in addition to real time applications.
Kafka is a general purpose publish-subscribe model messaging system, which offers
strong durability, scalability and fault-tolerance support. For the pipelining approach of
integration of PHEME components, Apache Kafka allows to pass streams (e.g. Twitter
streams) from one component to the next. PHEME components and algorithms can
therefore publish and subscribe to data streams to decouple the different processes, thus
creating pipeline of loosely-coupled components. Figure 3 shows the publish-subscribe
mechanism in Kafka.

Figure 3. The publish-subscribe paradigm in Kafka

The Capture module provides an Apache Kafka installation that allows the subscription
from PHEME components to the social networks data streams collected in real time by
Capture. As an example, implementing a new Kafka Consumer for the streaming
incoming flow is just a matter of creating a new Kafka Topic and subscribing to it, as
shown in Figure 4 in an example taken from Capture.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

14

Figure 4. An example of a Kafka consumer reading from Twitter

2.2.3. Other possible integration mechanisms
It is also possible to use directly APIs from different modules to achieve a more tight
integration between components. Examples of these are:

● Capture REST API in order to execute basic and/or faceted queries over the
collected data. Components from PHEME will be able to fetch data using the
available services. This is only possible if the data is stored in the raw data
repository (switched-off in the Sheffield infrastructure, but available in the KCL
infrastructure). Some of the methods are nevertheless always available, for
instance to initiate new data collections, sample results, etc.

● Dashboard Document API: API to insert documents in the PHEME Dashboard
as discussed in section 7 (7.3). In the integrated framework, the dashboard is
subscribed to one of the pipelines (in this case, the medical pipeline) and the
data streamed from there is stored and indexed in the dashboard repository for
further visualization purposes.

● Using GraphDB queries (SPARQL): The social media data enriched with
annotations and further enhanced in GraphDB, can be accessed via a SPARQL
endpoint. In the case of the journalist pipeline, the Journalist Dashboard uses
specific SPARQL queries to retrieve and show the data from GraphDB. More
details about GraphDB can be found in section 7 (7.2).

2.2.4. Scalability and performance
The PHEME Integrated Framework is meant to scale. In order to ensure the scalability
of the solution the project is on the one hand improving the performance and scalability
of the different individual components as reported in previous sections. On the other
hand, from the integration perspective, the project is following a global integration
strategy to ensure the performance and scalability of the overall system. This global
integration strategy presents project-wide approaches orthogonal to the individual
scaling plans and common for most technical components. The focus is on integration
aspects to provide an infrastructure to integrate components while enabling big data

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

15

scaling techniques, such as scaling up, scaling out, parallelisation, etc. This global
integration strategy takes into account limits of individual components to align them
into a common plan.

From the integration and scalability perspectives, pipelines should be able to increase
the throughput and decrease the latency as much as possible. In order to do that,
enabling parallelisation means processing of several inputs coming from components
in a pipeline with other identical components that work in parallel. In an optimal
scenario, it is simply adding more processing units for the same components that work
slower compared to other components in a pipeline. More processing units can be
provided to components by scaling horizontally or vertically. Scaling horizontally is
achieved by adding more nodes (computers) to a system, while vertical scaling can be
achieved by running the whole pipeline on a faster machine.

In the current version of the pipelines, and due to the time and hardware constraints of
a research project such as PHEME, we couldn’t afford the actual implementation of
massive parallelization. Therefore, we detected some bottlenecks (i.e. components of
the pipeline that cannot cope with certain peaks) that could have been easily overcome
by adding extra cores, but we didn’t do it as the current setting was enough to probe the
project and use case needs. This was a good exercise to warn component-owners to
fine-tune their components to achieve the desired throughput, although in some cases
parallelization would be the way to go. Therefore this is a hint on how to proceed in
case of going for a commercial approach, where the pipeline throughput should be
maximised as much as possible.

Deliverable D6.2.2 (Evaluation report) will report on the scalability achieved by the
different pipelines, bottlenecks and ways to improve the results of the project in future
commercial settings.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

16

3 Data flow and repositories

3.1. Introduction
Within WP6, task 6.2 is in charge of investigating how PHEME’s diverse kinds of
content and knowledge can be stored and accessed. From the perspective of the data
usage within PHEME, the project differentiates between the social media data with very
little pre-processing (Social Media content), and the more semantic and annotated
content (Knowledge content). This section reports on the approach followed to integrate
data for the project needs.

PHEME provides two main storage systems for social media and knowledge content in
order to guarantee the data flow and data integration for the different services and
components developed in PHEME.

The social media content data layer provides storage and access to the raw data acquired
from social media. It is based on the Capture module developed in the scope of task 6.1
and it is based on state-of-the-art big data technology to guarantee the scalability of the
solution. More details of this module can be found in section 7. As it has been already
mentioned, PHEME proposes NoSQL databases (HBase) and indexed repositories
(Solr) for the raw data. However these repositories are not being used on the Sheffield
infrastructure, as it was important not to duplicate storage but rather store the results of
the processed data in the Knowledge repository. Therefore, the focus on this section is
more on the knowledge integration.

On the other hand, from the technical perspective the data flow in PHEME is achieved
by using Apache Kafka as the main middleware to create pipelines. PHEME
components are actively producing and consuming data from different Kafka topics
using the pub-sub paradigm. In this section the concrete technical solution used in
PHEME for data flow integration is presented.

3.2. Data flow in PHEME

3.2.1. Data flow
The integration of the PHEME infrastructure is dataflow-driven and stream-oriented in
order to deal with large amounts of data in a timely fashion. The shift from service-
oriented architectures towards the data-flow driven (e.g. message-oriented)
architectures allows many obstacles to be overcome overcoming many obstacles of
traditional approaches and focusing on relevant requirements. From the point of view
of integration, the set of desired requirements towards the architecture are the
following:

● High throughput
● Availability and resilience through infrastructure distribution and failover

mechanisms (e.g. automatic replication, node failure handling)
● Shift from less efficient data polling (e.g. REQ/REP8) to more efficient data

pull, with client-side subscription to relevant message channels

8 https://en.wikipedia.org/wiki/Request%E2%80%93response

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

17

● Distributed deployment for consumer/producer or publisher/subscriber data
processing paradigms.

● Message queues/logs for dealing with real-time, buffered data streams

PHEME partners are following a common approach for the format of the Kafka topics.
The idea is to follow a pipeline approach enriching the original data from the social
media feeds with extra annotations provided by the different components of the
pipeline, thus enabling an incremental addition of annotations of the original Kafka
message. The first component in the pipeline (Capture) publishes stream of tweets and
Reddit posts in Kafka topics. Other component subscribe to those topics to do their job,
produce new annotations (i.e. language of the tweet) and publish them in a new Kafka
topic. This incremental approach allows for a very easy integration, as components just
need to publish a new stream with the addition of the new annotation made. New
components just need to subscribe to those queues to consume the streams.

This approach has been followed in the design of the main pipelines that need near-real
time processing (see section 4. where the different pipelines developed in PHEME are
explained in more detail). In those pipelines, the first component (Capture) sends raw
messages to the first Kafka topic. The message passes through various components.
After every stage of the processing the enriched message ends up in a new Kafka topic,
ready to be consumed by the next component in the pipeline.

At the end of the pipelines the data flows to the two dashboards developed for the
Medical and Journalist use cases. In the case of the Medical pipeline a final component
passes the enriched data to the PHEME Dashboard developed in WP5. This dashboard
uses an internal database to render the results in a web based interface. In the case of
the Journalism dashboard, the web-based interface developed in WP8 queries both
Capture and GraphDB APIs and SPARQL endpoint in order to render the enriched data
gathered via the Journalist pipeline.

3.2.2. Kafka message format guidelines
The guidelines for this particular integration pipeline approach involving processing of
social media data and the addition of annotations are the following:

● Messages are passed through Kafka topics in JSON format, encoded as simple
text strings.

● At the beginning of the pipeline, each JSON object has a set of common baseline
properties:

○ As Twitter, our main source, Reddit and other sources all follow the
convention of placing the document text in a top-level key called "text".

○ The social media message identified should be a top-level "id_str"
object, following Twitter convention.

○ To distinguish between different social media document types (e.g.
Twitter, Reddit, etc.) each message has "pheme_source" property that
denotes one of supported type. At this moment those are: “twitter”,
“reddit”. Other types will be included later.

○ In case of Twitter, the raw twitter object is contained in “raw_json”
property. Other SN may have similar raw data.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

18

● Changes to the JSON object message are incremental, that is, each component
may add new annotations (in a form of JSON properties), but should not remove
previous information if it is not necessary. In other words, components re-
publish the entire original JSON object and add additional keys.

● New annotations created by the pipeline components are added as top-level
properties to the existing JSON object. Examples of some of these annotations
are the following properties:

○ Event extraction: "event_cluster", long unsigned int
○ Language: "langid", an array consisting of two elements: [string, float],

where string is a two-letter lowercase country code and float the
confidence in [0..1]. This is not to be confused with the “lang” field
based on the Twitter language identification that comes from the Twitter
API and is contained in messages.

○ Tokens: "tokens", an array of tokens in a form of array: [int, int], giving
token start/end offsets.

○ Named entities, spatio-temporal entities: "pheme_entities", an array of
entities in a form of array: iint, int, string, corresponding to string start
offset, end offset, and entity type; e.g. "person", "timex".

○ Support/Deny/Query: "pheme_sdq", array of [string, float] where string
is support|query|deny and the float the confidence in [0..1].

○ Spatial grounding: "pheme_location", an object of {key: value}, where
the source key is "latlong", "dbpedia", "nuts" or "geonames", and the
value is either a string reference or an array [float, float] for latitude and
longitude. All keys are optional.

● If there is a chance of colliding with a social media source's top level key, or a
key name is non-descriptive, prefix it with "pheme_"

An example document from the first stage of the pipeline:
{
 "text": "Obama is doing well",
 "pheme_source": "twitter",
 "id_str": "921349812834098012313256586018634",
 "raw_json": { raw JSON object, as received from the Twitter API }
}
After passing through the pipeline components, the message might look like this:
{
 "text": "Obama is doing well",
 "pheme_source": "twitter",
 "id_str": "921349812834098012313256586018634",
 "event_cluster": 8721364871239,
 "langid": ["en", 0.879],
 "tokens": [
 [0,5], [6,8],

[9,14],
[15,19]],

 "pheme_entities": [
 [6,8, "person"],

[9, 14, ”event”]],
 "pheme_sdq": ["support", 0.566],
 "pheme_location": {

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

19

"dbpedia”: "United_States",
"latlong": [35.5, 98.0] },

 "raw_json": { raw JSON object, as received from the Twitter API }
}
Note that other social media document types (coming from social media sources other
than Twitter) will follow similar guidelines. In this sense, the core fields remain the
same (such as “text”, “pheme_source”, “id_str”), while other specific fields can be
added based on particular data type needs.

3.2.3. PHEME Knowledge Integration
The resource description framework (RDF) is a world wide web consortium standard
(W3C standard) that defines a graph based models that allows integration of flexible
and dynamic data from virtually limitless sources. In PHEME we have requirements to
integrate various highly dynamic sources including but not limited to Twitter and
Reddit. There is also need of real time indexing and support for standard query
mechanisms and language such as the SPEQL language and SPARQL endpoint it
became obvious that we needed a native triple store as our graph database component.
Triplestores also allow the definition of an ontology that can serve as a contract or an
API layer between different components in the system. Ontologies can also help
provide inference mechanisms at scale. The semantic repository GraphDB was chosen
as it is native triple store with scalable inference layer. It is capable for storing, querying
and managing large amount of structured and semi-structured data and allows for
interlinking it with LOD resources. In combination with its powerful inference
mechanisms GraphDB provides excellent tooling capabilities for data management and
exploration.

From a technical perspective, the Knowledge repository in PHEME is covered by
GraphDB. A detailed description of GraphDB was given in T4.1. (Deliverable D4.1.1,
“LOD-based Reasoning about Rumours: Initial Prototype”). The data model is
presented in Deliverable D4.1.2. “LOD-based reasoning” and is schematically
demonstrated on Fig. 1.5. In addition to the properties presented there, in the later
phases of the project, new properties for tweet veracity and cross-media linking are
introduced. All these could be observed in the sample RDF representations of the four
main PHEME concept types - Tweet, PhemeMention, UserAccount,
CrossMediaLinking available in section 8.

In D2.2 “Linguistic Pre-processing Tools and Ontological Models of Rumours and
Phemes” we described in the PHEME ontology, that models veracity in social media.
The ontology describes rumours, misinformation, disinformation and disputed claims,
together with important network information such as authors (receivers and diffusers),
events, and relations. Also, it easily integrates knowledge from LOD datasets, including
DBPedia, Wikidata and GeoNames.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

20

Figure 5. Components for tweets enrichment and for GraphDB integration

On Figure 5 are shown the Ontotext components for Concept Tagging, Rumour
detection and the APIs responsible for transforming the JSON messages to RDF
according to a predefined ontology as well as the API used for writing RDF
representations of the messages into GraphDB. The process of storing RDF data in
GraphDB is explained in detail in section 7.

Figure 6. Integration of LOD data with PHEME ontology

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

21

The integration of LOD data with the PHEME ontology is implemented in the
Ontotext’s Concepts Linking (CL) component (shown on Figure 4) and they are
interlinked as given on Figure 5. The CL component enriches the textual content of
every tweet (or other information resource) represented in the PHEME ontology with
LOD concepts, called PhemeMentions. It has several modules executed in a row on the
input text. It starts with text preprocessing where basic linguistic analysis is performed:
tokens and sentence boundaries are detected, part-of-speech labels are added to the
words and shallow parsing is also applied. The next phase consists of logic that
generates key-phrase candidates, assigns relevance scores to the candidates, and
classifies them into positive or negative instances via a specialized processing resource
for supervised classification. After that the text is enriched with content from gazetteers
and entity candidates are matched. Given the named entity candidates discovered by
the Linked Data Gazetteer as a prerequisite, the next phase conducts classification of
each candidate into a positive or negative instance, based on the article context. As a
result, the ambiguity associated with the existence of overlapping gazetteer lookups is
eliminated – at most one named entity remains per document position, and the
redundant named entity candidates are removed. At the disambiguation phase each
entity is being linked with an existing concept in our predefined knowledge base. The
knowledge base comprises 3 main linked data sources - DBpedia9, WikiData10 and
Geonames11. Currently, the component supports disambiguation of named entities
belonging to any of the following 4 classes: “Person”, “Location”, “Organization” and
“Event”. Each mention has properties: start (the position where it starts in the text, in
characters), end (the position where it ends), name (the name of the mention),
confidence (a probability estimate of the confidence of the tag, given by the Concept
Extraction model), generated (a Boolean value that is false if the entity is found as a
concept in the LOD knowledge repository and true, if it is only predicted by the model,
but no corresponding concept was found in the LOD knowledgebase) and instance (the
URI of the concept in the LOD knowledgebase, if not generated).

The PHEME knowledge graph contains the PHEME ontology and all concepts from
DBpedia, GeoNames and WikiData with labels in English, Bulgarian and German. The
PHEME graph is used to ground the small and rather simple text of a tweet, in the world
knowledge and linked open data. For instance, if a tweet is automatically categorised
(enriched) with Donald Trump and an event happening in London, GraphDB can infer
new facts leveraging the rich hierarchy in GeoNames and the Person’s class properties
in DBpedia. The system can associate the tweet with the Republican Party since Mr
Trump is linked to this concept via a DBpedia property, and to the location UK, since
London is a sub region of the UK. Such inferences provide richer and deeper context
around the tweets and facilitate information retrieval, query performances and
navigating in the data.

9 http://wiki.dbpedia.org/
10 https://www.wikidata.org/
11 http://www.geonames.org/

http://wiki.dbpedia.org/
https://www.wikidata.org/
http://www.geonames.org/

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

22

3.3. Cross-media and cross-language data integration approach

3.3.1. Cross-media
The PHEME pipeline schema integrated in WP6 is designed to support multiple social
networks. In the previous version of this deliverable (D6.1.2), it was successfully tested
with the Twitter data. The central idea for providing cross-media interoperability on the
message level is the definition of common attributes of social media messages, and
providing social network-specific extensions as complementary information. In this
way, component operating on general social media data can still consume new format,
while additional information (social media specific) can be taken into account when
performing natural language classification tasks.

The top-level raw properties that are common across social media are the following:

● Text (or otherwise original content of the post)
● Date (Unix timestamp)
● Id (unique message identifier)
● User (author of the post)
● Source (type of message, a social network that is the source of this message)

3.3.1.1 Twitter data

PHEME has access for research purposes to historical Twitter data. However, due to
the need to identify and follow in near-real time the events happening in Twitter, a
number of continuous data collection tasks were established related to Twitter. To that
extent, Atos provided an initial version of the Capture framework, developed in the
scope of commercial proof of concepts with Atos customers. This initial version has
been tailored and extended for further project needs. More detailed information about
Capture can be found in section 7.

Twitter data can be searched in the whole Twitter. Capture had an initial data model
enabling the acquisition of tweets using the Twitter Search12 and Streaming13 APIs. In
particular, the Twitter model in Capture was also extended to be able to not only retrieve
the pure json representation of a tweet, but also Twitter user profiles, list of followers
and followees, etc. using the existing Twitter open APIs. The Capture model for Twitter
data is characterized by the followings attributes:

● TweetID: The representation of the unique identifier for the Tweet.
● CreatedAt: UTC time when this Tweet was created.
● FavouriteCount: Indicates approximately how many times this Tweet has been

“favorited” by Twitter users.
● HashTags: Tweet hash tags.
● InReplyToId: If the represented Tweet is a reply, this field will contain the

integer representation of the original Tweet’s ID. Needed for the conversation
chains.

● Latitude: The latitude of the Tweet’s location.

12 https://dev.twitter.com/rest/public/search
13 https://dev.twitter.com/streaming/public

https://dev.twitter.com/rest/reference/post/favorites/create

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

23

● Longitude: The longitude of the Tweet’s location.
● OriginalTweetId: Original identifier of the Tweet.
● Place: It is a specific, named location with corresponding geo coordinates.
● RetweetCount: Number of times this Tweet has been retweeted.
● Source: Utility used to post the Tweet, as an HTML-formatted string. Tweets

from the Twitter website have a source value of web.
● Text: Tweet text
● UserDescription: The user-defined text describing their account.
● UserFollowers: The number of followers this account currently has. Under

certain conditions of duress, this field will temporarily indicate “0.”
● UserFollowees: The number of users this account is following. Under certain

conditions of duress, this field will temporarily indicate “0.
● UserID: The representation of the unique identifier for the User.
● UserName: User name.
● UserScreenName: The screen name of the user.
● RawTweet: The whole content of the raw tweet

Capture implements a list of search queries into Data Channels. The Twitter data
gathered by Capture for each of the data channel is streamed into the pipeline including
the data channel ID in order to differentiate from which query the tweets come from
and it is then analysed and enriched by the rest of the components of the pipelines.

3.3.1.2 Reddit data

Reddit is another social network that is oriented around the concepts of sub-reddits:
focused groups typically centred on a common topic of interest. There are plenty of
sub-reddits on almost all categories, such as education, entertainment, technology,
news, and many others. Users on Reddit subscribe to their sub-reddit of choice and
submit items (such as text postings, images, URLs) or comment on other user’s items.
In this sense Reddit resembles bulletin board systems or internet forums. The
discussions on Reddit are flourishing and are source of many data on almost any
conceivable topic.

For the sake of the PHEME project, we aim at two main categories:

● Journalism dashboard: News-related sub-reddits concerning Switzerland and
world news (general topics)

● Medial dashboard: sub-reddits on mental health and depression.
Contrary to the Twitter social, the relevant data cannot be simply searched across the
whole Reddit, but rather we aim at monitoring concrete chosen sub-reddits. This is done
on a continuous fashion, by monitoring:

● New postings: beginning of new conversations.
● Comments on new and ongoing conversations.

The acquisition of Reddit posts is done through the Reddit API14. The structure of data
resembles the tree-like structure of Reddit conversations.

14 API Reference https://www.reddit.com/dev/api/

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

24

Each conversation is also rated based on the number or upvotes/downvotes and number
of comments below the post. Individual comments can be also rated by other users and
higher rated comments tend to appear closer to the top.

Another difference in comparison with Twitter is the definition of the single message.
In case of Twitter a single message is a “Tweet”. In case of Reddit this can be either a
whole conversation or a single post, depending on the concrete scenario. For the sake
of PHEME processing pipeline we aimed at the latter: each message is an individual
comment, with necessary metadata that locates such comment in a concrete
conversation in a sub-reddit.

Capture has been also adapted to carry out the Reddit data collection.

3.3.2. Cross-language
As in the case for cross-media, the PHEME pipelines are helping to solve the cross-
language issues. Basically the approach consists of getting the raw data from social
networks and then splitting the language-dependant part of the process in different
pipelines using different Kafka topics for each language. Components for English,
German and Bulgarian processing are then doing their job before converging into the
final stages of the pipeline.

Section 4 explains in more detail the concrete implementation of the pipelines done in
the project.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

25

4 Components and pipelines

This section reports on the current version of the integrated prototype released in the
final stages of the project. It also gives an overview of the main processes, components
and data delivered, focusing in the two main pipelines delivered for the PHEME use
cases subject of integration work.

4.1. Overview of the components
Table 1 shows the components developed in different PHEME work packages that have
been integrated within WP6. The table describes in brief the status of the each
component, its availability and pointers either within this document or to specific
deliverables where more information can be found.

Note that in the scope of the project there are two main pipelines: The so-called Medical
and Journalist pipelines, integrating components useful for WP7 and WP8 respectively.
Due to their business requirements, the Medical pipeline tracks tweets only in English
and shows the final results in the PHEME dashboard developed in WP5, while the
Journalist pipeline is multilingual and the results are shown in the Journalist dashboard
developed in WP8. Therefore, some of the components listed in the table below are
common to both cases, while others are related to just one of them. In particular we
listed separately the components specific to the Medical pipeline and of the other
languages other than English.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

26

Table 1. PHEME components

Component Responsible
Partner

Brief Description Extended
Description

Capture ATOS Data collection tool developed in WP6
Reads From: journalists and medical data channels (internal way of retrieving social
media info in Capture)
Output To: journalists_capture and med_capture kafka topics
Annotations added: “dc_id”, "text", "userID", "userScreenName", "createdAt",
"id", "id_str", "lang", "source_type", "raw_json"
Usage: Capture is a tool that must be configured to get social media data using specific
data channels (queries to social media). In Pheme it has been configured to get data for the
medical and journalist use cases.
E.g.
{
“dc_id”: “xyz”,
"text": "Obama is doing well",
"userID": "xxxxxx",
"userScreenName": "xxx xxxx",
"createdAt": "2016-04-18T11:14:24Z",
"id": "921349812834098012313256586018634",
"id_str": "921349812834098012313256586018634",
"lang": "en",
"source_type": "twitter",
"raw_json": { raw JSON object, as received from the Twitter API },
}
Availability: The code needed for Pheme is open sourced and available in the Pheme
GitHub https://github.com/project-pheme/capture

Section 7.1.
Used as the
main ingestion
point of
Twitter and
Reddit data
both for the
Journalist and
Medical
pipelines

https://docs.google.com/document/d/1tYcf-VPMeZP1SJRRphSJilWspVLbqLWie0tSbPXq3r8/edit
https://docs.google.com/document/d/1tYcf-VPMeZP1SJRRphSJilWspVLbqLWie0tSbPXq3r8/edit
https://docs.google.com/document/d/1tYcf-VPMeZP1SJRRphSJilWspVLbqLWie0tSbPXq3r8/edit
https://github.com/project-pheme/capture

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

27

Component Responsible
Partner

Brief Description Extended
Description

Language Detection USFD Algorithm to classify incoming messages according to their language (focus is on EN, DE,
BG). It's critical to identify the language of content before sending it for linguistic
processing. It's also worthwhile ignoring non-project-languages for event clustering, in
order to reduce load and ease development. For this, we use state-of-the-art language ID
to screen and split incoming content.
Analysis earlier in the project covered the capability of language identification over social
media content, where terseness of messages provides a real challenge to traditionally n-
gram based approaches. Langid.py, with its LD feature selection, reduces the impact of
noisy features and identifies language-discriminatory features that are stable across shifts
of genre – perfectly suited to social media. It performed best overall in our trials. Twitter's
recently-upgraded language ID is still not yet powerful enough for the task, working over
a balance of existing non-social-media language ID solutions.
Therefore, we wrap langid.py with Kafka input and split-output interfaces, taking in any
social media content and providing three language-specific streams for English, German
and Bulgarian.
Langid.py is entirely Python, using an internally-encoded model, and so as platform-
independent as that language. We have deployed this on Linux systems using the Kafka-
python library.
Reads From: pheme_capture OR med_capture kafka topics
Output To: pheme_en pheme_de, pheme_bg OR med_en kafka topics
Annotations added: “langid”
Usage: The module is stored in the GATE Extras repository (gate-twitter/stream/). It reads
from a given Kafka topic, consuming there and mapping Capture output into the
Pheme/Twitter JSON format agreed and described in D6.2.1. Language specific messages
are published on three Kafka topics: pheme_en, pheme_bg and pheme_de. The remainder
of content is discarded.

Details in D2.2
First
component for
the Journalist
and Medical
pipelines

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

28

Component Responsible
Partner

Brief Description Extended
Description

E.g.: ./langid_Kafka.py
Availability: Available in the Pheme GitHub at https://github.com/project-
pheme/langid

English Event
Detection

USFD Event detection aims to detect newsworthy events from a stream of tweets. It adds
annotation to the tweets indicating the ID of the cluster of events the tweet is assigned to.
Event detection aims to group together claims, or substories, that are made up of incoming
messages. We have upgraded the technology here beyond that in D3.3.1. We now achieve
this grouping through a cognitive-based machine learning approach. The participants,
events, and places are extracted from incoming messages, as well as URLs, hashtags, and
username mentions. Through a neural network trained to identify same-substory messages,
this information is used to judge which of all the clusters currently being tracked the
incoming message belongs to. If it belongs to none of them, it goes on its own to form a
new cluster.
The cluster id is available through the “event_cluster” field of the output Kafka The HDP
algorithm requires one to specify the input Kafka stream to read from and the output Kafka
stream to write.
It uses a separate pre-processor for tweets from different languages and the same HDP
algorithm works for tweets from different languages. It considers the
“in_reply_to_status_id” and other “related document” fields of the incoming message to
group together tweets belonging to the same conversational thread.
The algorithm is developed using the Python programming language running in the Linux
operating system environment. Python 3.4 or higher is required to run the algorithm. The
algorithm is integrated in the Pheme project using the Apache Kafka framework.
Further, access to NLTK and the Keras deep learning library are required, as well as
GenSim for its word embedding loading functions.

Deliverable
3.3.1
For both
Journalist and
Medical
pipelines
(English)

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

29

Component Responsible
Partner

Brief Description Extended
Description

The algorithm can be invoked by calling the Python program clusterer.py from the
command line and providing the Kafka stream to read and write, as well as a machine
learning model. This program comes with bundled help. Machine learning models can be
trained using nn_cluster_keras.py over data generated using train.py.
Reads From: pheme_en_entities OR med_advert kafka topics
Output To: pheme_en_events OR med_events kafka topics
Annotations added: event_cluster
Usage: /home/leon/pheme3/bin/python ./clusterer.py -m prce.negE-
1.tsv.model.20160929132617.h5 -ki pheme_en_entities -e
glove.twitter.27B.25d.txt -n 800 -ko pheme_en_events -f
journalism.clusters -t 0.03 -T -D dc_id
Availability: Available in Pheme GitHub after publication through blind review

English Entity
Tagging

USFD Named entity, spatial, and temporal extraction are all run as independent instances of the
entity-recognition class, taken from the Python3 PIP package which was created earlier in
Pheme. The NE and spatial variants use non-generalised Brown clusters from English
tweets, with c=2500 and T=250 million; the spatial variant uses non-generalised Brown
clusters induced over a blend of Reuters newswire and English tweets, with c=6000 and
64 million tokens of each genre (128 million total).
This connects to the Kafka broker, consuming JSON documents one by one and re-
publishing them with overlaid tokens, mapping tokens to pairs of character offsets, and
also a pheme_entities field containing a list of entities, for each the entity types and
bounding token offsets.
Reads From: pheme_en OR med_en
Output To: pheme_en_entities OR med_entities
Annotations added: pheme_entities

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

30

Component Responsible
Partner

Brief Description Extended
Description

Usage: entities_kafka.py <in topic> <out topic>
E.g.
 /home/leon/pheme3/bin/python3 entities_kafka.py pheme_en
pheme_en_entities
Availability: Core library available in the Pheme GitHub at
https://github.com/leondz/entity_recognition

English Concept
Tagging

ONTO This component is concerned with the identification of entities in text in English language.
It is composed of several modules executed in row on the input text. It starts with text
preprocessing where basic linguistic analysis is performed: tokens and sentence boundaries
are detected, part-of-speech labels are added to the words and shallow parsing is also
applied. The next phase consists of logic that generates keyphrase candidates, assigns
relevance scores to the candidates, and classifies them into positive or negative instances
via a specialized processing resource for supervised classification. After that the text is
enriched with content from gazetteers and entity candidates are matched. Given the named
entity candidates discovered by the Linked Data Gazetteer as a prerequisite, the next phase
conducts classification of each candidate into a positive or negative instance, based on the
article context. As a result, the ambiguity associated with the existence of overlapping
gazetteer lookups is eliminated – at most one named entity remains per document position,
and the redundant named entity candidates are removed. At the disambiguation phase each
entity is being linked with an existing concept in our predefined knowledge base. The
knowledge base comprises 3 main linked data sources - DBpedia
(http://wiki.dbpedia.org/), Wikidata (https://www.wikidata.org/) and Geonames
(http://www.geonames.org/). Currently, the component supports disambiguation of named
entities belonging to either of the following 4 classes: “Person”, “Location”,
“Organization” and “Event”.

http://wiki.dbpedia.org/
https://www.wikidata.org/
http://www.geonames.org/

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

31

Component Responsible
Partner

Brief Description Extended
Description

This component is run twice, once on the text of the message and second on the
user.location tweet property which is also a free text added by the twitter user. The second
time we aim to identify the location the user is suggesting.

Reads From: pheme_en_events, pheme_de_events, pheme_bg_events OR med_events
Output To: pheme_en_entities, pheme_de_entities, pheme_bg_entities OR med_entities
Annotations added:
The component appends annotations in `pheme_concepts` and `pheme_user_location`
properties. The user location is extracted from the user.location tweet property which is a
free text added by the twitter user.

pheme_concepts": [
{

"name": "Trump",
"type": "Keyphrase",
"features": {

"isGenerated": "true",
"confidence": 0.5,
"relevanceScore": 0.896551724137931,
"inst": "http://data.ontotext.com/publishing/topic/Trump",
"class": "http://ontology.ontotext.com/taxonomy/Keyphrase"

},
"startOffset": 13,
"endOffset": 18

},
{

"name": "Political",
"type": "Keyphrase",
"features": {

"isGenerated": "false",
"confidence": 0.8362389173713288,
"relevanceScore": 0.689655172413793,

http://data.ontotext.com/publishing/topic/Trump
http://ontology.ontotext.com/taxonomy/Keyphrase

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

32

Component Responsible
Partner

Brief Description Extended
Description

"inst": "http://ontology.ontotext.com/resource/tsk85t0bq70g",
"class": "http://ontology.ontotext.com/taxonomy/Thing"

},
"startOffset": 31,
"endOffset": 40

}]

Usage: The component is packaged as a standalone web application. It registers itself to
kafka stream and listens to messages in the configured topics.
Availability: Available in the Pheme GitHub

Cross-Media and
Cross-Language
linking

USAAR Language independent. Linking to press-media from Twitter text. Extraction of an
extended set of keywords/terms
The core of the algorithm is language-independent string alignment between social media
texts (in our first prototype, Twitter posts) and user-linked web documents (i.e., classical
online media articles). The algorithm can additionally connect to media repositories for
further cross-media access. In the currently implemented version, the algorithm accesses
a third-party web service, EventRegistry (http://eventregistry.org/), a product of the FP7
Project "Xlike” (http://www.xlike.org/). Usability evaluation is planned in cooperation
with WP8 (Digital Journalism Use Case) partners in Y3.
Reads From: pheme_en_concepts, pheme_de_concepts
Output To: pheme_en_media, pheme_de_ media
Annotations added:
Below we have a display of the currently added annotation, consisting in a listing of linked
document with a summary, a list of keywords extracted from the original tweet and the
tweet external text, and with the information if a contradiction has been found between the
original tweet text and the data pointed at by the url.

The
component
"Cross-Media
and Cross-
Language
Linking" has
been
developed in
the context of
Task 3.1, and
has been
described in
detail in D3.1
"Cross-Media
and Cross-
Language

http://ontology.ontotext.com/resource/tsk85t0bq70g
http://ontology.ontotext.com/taxonomy/Thing

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

33

Component Responsible
Partner

Brief Description Extended
Description

{'summary_of_linked_article': u'Doubling down on his goal to upend the established world
order and remake it in his own image\u2014one that looks particularly like told two
foreign newspapers over the weekend that he would consider lifting sanctions on Russia
and believes that the NATO alliance, put in place to check Russian influence in the wake
of WWII, is \u201cobsolete.\u201d', 'linked_url':
u'http://www.politico.com/story/2017/01/russia-us-relations-trump-kremlin-
233673?utm_source=dlvr.it&utm_medium=twitter', 'keyword_candidates_for_tweet':
[u'Lavrov: We may improved relations U.S. Trump', u'relations U.S.'],
'cleaned_tweet_text': u'Donald Trump Just Offered Putin Exactly What He Wants URL',
'presence_of_contradiction': 'False', 'tweet_id': u'821334259545690116',
'presence_of_linked_article': 'True', 'linked_article_domain': 'www.politico.com',
'related_articles_headlines': [{'deu': []}, {u'eng': [u'Lavrov says Russia keen for dialogue
with Trump', u"Donald Trump promises post-Brexit Britain a 'fair' trade deal", u"Trump is
Putin's mouthpiece", u"Why Europe Is Worried About Donald Trump's Latest Remarks",
u"Trump calls NATO 'obsolete,' pitches Russia nuke deal, hits Merkel over refugee crisis
| The Japan Times"]}], 'linked_article_headlines': u'Lavrov: We may have improved
relations with U.S. under Trump - POLITICO'}

Usage:python xmedia.py
Availability: Available in the Pheme GitHub

Linking
Algorithm"

Rumour stance and
veracity
classification

USFD Having enriched, event-clustered, language-specific text, the goal is to identify stance
expressed in each tweet belonging to the pheme, as well as determine the overall veracity
of the pheme/rumour. Tweet-level stance is classified as supporting, denying, querying or
commenting (SDQC). The implementation details appear in D4.3.2. This component

D4.3.2.

http://www.politico.com/
http://www.politico.com/

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

34

Component Responsible
Partner

Brief Description Extended
Description

depends on tokenisation, POS tagging, named entity recognition, and emotion detection. It
also requires the GATE learning framework to perform the classification.

Reads From: pheme_en_ concepts
Output To: pheme_en_preprocessed
Annotations added: The output parameter added is pheme_sdqc which contains both the
predict label and also confidence, and pheme_veracity, containing the estimated
veracity and confidence in that estimate, as a tuple
Usage: Invoke a GATE application using the package in
gate-extras/pheme/gate-stream
Availability: Available in the Pheme GitHub

Rumour
Classification

ONTO Topic-agnostic, language-agnostic model, based entirely on the textual features of the
Twitter/Reddit message as wording, punctuation, length, capitalization etc. It does not
make use of any metadata features thus works independently of the message source.
The Rumour Classificator (RC) is a machine learning model (classification tree) that
predicts the probability that a tweet is a rumour. As a result the service gives back the
rumour coefficient of the specific tweet. The RC returns a probability, which quantifies
the likelihood that the tweet is a rumour. Therefore, it is a real value between 0 and 1; a
value of 1 means that the tweet is a rumour with certainty and a value of 0 means it is not
a rumour, with certainty.
Reads From: pheme_en_entities, pheme_en_events.
Output To: pheme_en_events, pheme_de_events
Annotations added: The component produces a “pheme_rumour_confidence” which is
attached to the final document.

Deliverable
D4.3.1
Section 7.1.2.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

35

Component Responsible
Partner

Brief Description Extended
Description

Usage: The component is packaged as a standalone web application. It registers itself to
kafka stream and listens messages in the configured topics.
E.g. { "pheme_rumour_confidence": 0.72 }
Availability: Available in the Pheme GitHub at ...

Pheme Dashboard
Ingestion

ATOS This component is in charge of streaming the data from the medical pipeline to the Pheme
Dashboard using the Pheme Dashboard and API developed in WP5

Reads From: med_processed
Output To: Stream to be handled by the Pheme Dashboard (to be persisted in their
database)
Annotations added: None
Usage: It is used in the scope of the medical pipeline as main output of the pipeline. The
results are streamed to the Pheme Dashboard to be used and visualized.

Availability: Available in the Pheme GitHub

GraphDB Ingestion ONTO This component is responsible for collecting the final JSON enriched by the rest of the
components during the previous steps and for converting it into RDF document following
the ontology model (WP 2.2). Next the RDF document is imported into the Knowledge
repository (GraphDB).

Reads From: pheme_en_graphdb, pheme_de_graphdb, pheme_bg_graphdb
Output To: GraphDB RDF database. No further output to kafka.
Annotations added: None

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

36

Component Responsible
Partner

Brief Description Extended
Description

Usage: The component is packaged as a standalone web application. It registers itself to
kafka stream and listens to messages in the configured topics.

Availability: Available in the Pheme GitHub

Medical pipeline specific

Advert, Anti-
stigma and Suicide
Detection

KCL In social media, large quantities of messages are sent that contain content advertising
particular medications. Similarly, many messages is countering stigma about mental health
and correcting stigmatizing statements. To classify tweets into whether they were
advertising medication and counteracted stigma, two algorithms that make use of natural
language processing (NLP) have been developed. Taking as input the text content of
tweets, the advert algorithm classifies the message as to whether it advertises psychotropic
medication or not. The anti-stigma algorithm, on the other hand, applies a set of linguistic
rules to the messages and classifies them as either anti-stigma or not anti-stigma. Finally,
the suicide application classifies tweets based on whether they are literal references to
suicide or not. These three algorithms have been packaged together in this component.
The algorithms have been developed in python and do not use any external NLP libraries.
The application inputs the form of Kafka messages, processes their text and writes out as
JSON to a Kafka output, the classification of advert, anti-stigma and suicide (whether or
not the message is an advert, a literal reference to suicide or refers to anti-stigma).

Reads From: med_ en
Output To: med_advert
Annotations added: anti-stigma (0=not anti-stigma, 1=anti-stigma), advert (0=not
advertisement, 1=advertisement) and suicide (0=not relevant, 1=relevant)

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

37

Component Responsible
Partner

Brief Description Extended
Description

Usage: The module, test.py, is stored in the PHEME directory of the server Gatestorm1. It
reads from a given Kafka topic, consuming there and mapping ATOS Capture output into
the PHEME/Twitter JSON format.
E.g. Testing components over annotated datasets, respectively, showed the applications to
perform highly with 0.90 P and 0.92 R for the advert app and 0.98 P and 0.31 R for the
anti-stigma app and 0.92 P and 0.58 R for the suicide app.
Availability: Available in the Pheme GitHub

Stance
Classification

USFD Having enriched, event-clustered, language-specific text, the goal is to identify candidate
rumours. This is done by placing messages into the class of either support, deny, query or
comment (SDQC). We implement this using a Gaussian process model, implemented in
Gpy, and using the technology from D2.4 and WP4.[9]
The tool has a number of Python dependencies which require Python version 2.7 and
certain platform-specific tweaks; it is deployed on Linux.

Reads From: pheme_en_ concepts
Output To: pheme_en_preprocessed
Annotations added: The output parameter added is pheme_sdqc which contains both the
predict label and also confidence.
Usage: Run:
./Kafka_consumer_misinformation.py TOPIC1 TOPIC2 TRAININGDATAPATH
MODELPATH
to read content JSON from TOPIC1 and output resulting content JSON to TOPIC2.
Recommended training data and models are
data/twoPHEME_datasets_as_events_041015.csv
and

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

38

Component Responsible
Partner

Brief Description Extended
Description

results/store_models_test/BROWNGPjoinedfeaturesPooledLIN0.pick.

Availability: Available in the Pheme GitHub at https://github.com/project-
pheme/pheme-sdqc-gaussian

Bulgarian pipeline specific

Bulgarian Entity
Tagging

ONTO This component is concerned with the identification of entities in text in Bulgarian
language. It is composed of several modules executed in row on the input text. It starts
with text preprocessing where basic linguistic analysis is performed: tokens and sentence
boundaries are detected, part-of-speech labels are added to the words and shallow parsing
is also applied. The next phase consists of logic that generates keyphrase candidates,
assigns relevance scores to the candidates, and classifies them into positive or negative
instances via a specialized processing resource for supervised classification. After that the
text is enriched with content from gazetteers and entity candidates are matched. Given the
named entity candidates discovered by the Linked Data Gazetteer as a prerequisite, in the
next phase we conduct classification of each candidate into a positive or negative instance,
based on the article context. As a result, the ambiguity associated with the existence of
overlapping gazetteer lookups is eliminated – at most one named entity remains per
document position, and the redundant named entity candidates are removed.
Currently, the component supports disambiguation of named entities belonging to either of
the following classes: “Person”, “Location”, “Organization” and “Event”.

Reads From: pheme_bg_events
Output To: pheme_bg_entities

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

39

Component Responsible
Partner

Brief Description Extended
Description

Availability: Available in the Pheme GitHub

Bulgarian Concept
Tagging

ONTO Based on the entity tagging output and a type disambiguation procedure, this component
links each entity to an existing concept in our predefined knowledge base. The knowledge
base comprises 3 main linked data sources - DBpedia (http://wiki.dbpedia.org/), Wikidata
(https://www.wikidata.org/) and Geonames (http://www.geonames.org/).

Annotations added: The component appends annotations in `pheme_concepts` and
`pheme_user_location` properties. The user location is extracted from the user.location
tweet property which is a free text added by the twitter user.
pheme_concepts": [
{

"name": "Тръмп",
"type": "Keyphrase",
"features": {

"isGenerated": "true",
"confidence": 0.5,
"relevanceScore": 0.896551724137931,
"inst": "http://data.ontotext.com/publishing/topic/Trump",
"class": "http://ontology.ontotext.com/taxonomy/Keyphrase"

},
"startOffset": 13,
"endOffset": 18

},
{

"name": "Политик",
"type": "Keyphrase",
"features": {

"isGenerated": "false",
"confidence": 0.8362389173713288,
"relevanceScore": 0.689655172413793,
"inst": "http://ontology.ontotext.com/resource/tsk85t0bq70g",
"class": "http://ontology.ontotext.com/taxonomy/Thing"

},
"startOffset": 31,

http://wiki.dbpedia.org/
https://www.wikidata.org/
http://www.geonames.org/
http://data.ontotext.com/publishing/topic/Trump
http://ontology.ontotext.com/taxonomy/Keyphrase
http://ontology.ontotext.com/resource/tsk85t0bq70g
http://ontology.ontotext.com/taxonomy/Thing

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

40

Component Responsible
Partner

Brief Description Extended
Description

"endOffset": 40
}]
Usage: The component is packaged as a standalone web application. It registers itself to
kafka stream and listens to messages in the configured topics.
Availability: Available in the Pheme GitHub

German pipeline specific
The German pre-processing pipe-line is operational, and the steps needed to transform classical text processing software to be applicable to
social media documents (in the current version, Twitter text) have been described in D2.2 "Linguistic Pre-processing Tools and Ontological
Models of Rumours and Phemes". Recent work has been dedicated to integrating this component in the Pheme-Kafka pipeline, which is
described in the current document. The German processing tools also benefit an updated version of the language independent Cross-Media and
Cross-Language algorithm, via lemmatisation of both the social media and the online media texts, which results in improved string alignment.

What in principle were separate components have been integrated in a single component for performance reasons (Event Detection, Entity Tagging and
Concept Tagging). Therefore the German pipeline differs from the English pipeline.
All functionalities (Entity Tagging, Event Detection and Concept Tagging are thus reading from “pheme_de” and outputs directly to pheme_de_entities,
pheme:de_events and pheme_de_concepts

German Event
Detection
(including German
Entity
Tagging Detection
and German
Concepts)

USAAR Is now a functionality of one unique component (see introduction of the German pipe-line
above). Below in the example we can see how we transform a verb to its lemma
(“aufnahmen” in the text => “aufnehmen” in the annotation.
Reads From: pheme_de
Output To: pheme_de_entities and pheme_de_concepts

Annotations added:
The detected event (for now delivering only the verbal expression) and the related
tokenization indices (relevant info in bold face):

Builds on and
further
develops
D2.2
"Linguistic
Pre-processing
Tools and
Ontological
Models of

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

41

Component Responsible
Partner

Brief Description Extended
Description

"lang": "de", "in_reply_to_status_id_str": null, "in_reply_to_screen_name": null,
"coordinates": null, "contributors": null, "truncated": false}, "is_quote_status": false,
"retweeted": false, "text": "RT @fabikde: Als die USA einmal 10.000e syrische
Flüchchtlinge aufnahmen... Hab für SpOn über New Yorks \\"Little Syria\\" geschrieben.
https://t\\u2026", "source_type": "twitter", "pheme_events": [[63, 72, "aufnehmen"],
[122, 133, "schreiben"]], "metadata": {"iso_language_code": "de", "result_type":
"recent"}, "in_reply_to_user_id": null, "created_at": "2017-01-12T19:08:56Z",...

Usage: python pipeline_kafka_de
Availability: Available in the Pheme GitHub

Rumours and
Phemes

German Entity
Tagging

(including German
Event Detection and
German Concepts)

USAAR Is now a functionality of one unique component (see introduction of the German pipe-line
above)
Reads From: pheme_de
Output To: pheme_de_entities and pheme_de_concepts
Annotations added: In this case we add an annotation of the offsets in the text leading to
the detection of entities and the entities themselves. The relevant annotation is in boldface.
We notice that the entities have been mapped onto two different (compatible) classes, due
to the type of query we address to DBpedia
Examples:
"in_reply_to_user_id_str": null, "id": 819622207538294784, "lang": "de",
"in_reply_to_status_id_str": null, "in_reply_to_screen_name": null, "geo": null,
"coordinates": null, "pheme_entities_texts": ["USA", "USA", "Syria", "Syria"],
"pheme_entities": [[22, 25, "Country"], [22, 25, "Place"], [114, 119, "Country"],
[114, 119, "Place"]], "favorited": false, "user_screen_name": "Monaflor"}'b'{"langid":
["de", 1.0],

Builds on and
further
develops
D2.2
"Linguistic
Pre-processing
Tools and
Ontological
Models of
Rumours and
Phemes

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

42

Component Responsible
Partner

Brief Description Extended
Description

Usage: python pipeline_kafka_de
Availability: Available in the Pheme GitHub

German Concept
Tagging
(including German
Event Detection and
German Entity
tagging)

USAAR /
ONTO

Is now a functionality of one unique component (see introduction of the German pipe-line
above)
Reads From: pheme_de
Output To: pheme_de_entities and pheme_de_concepts
Annotations added: The addition here is a the annotation of concepts that make their ways
into GraphDB, following the specifications delivered by the partner ONTO
Examples:
"pheme_concepts": [{"name\" : "USA","startOffset": 22,"endOffset": 25,"type":
"Country","features": "{"class": "http://schema.org/Country",}}, {"name" :
"USA","startOffset": 22,"endOffset": 25,"type": "Place","features": "{"class":
"http://schema.org/Place",}}, {"name" : "Syria","startOffset": 114,"endOffset":
119,"type": "Country","features": "{"class": "http://schema.org/Country",}}, {"name" :
"Syria","startOffset": 114,"endOffset": 119,"type": "Place","features": "{"class":
"http://schema.org/Place",}}"], "dc_id": "d6dacda2", "retweeted_status": {"place": null,
"is_quote_status": false, "retweeted": false, "text": "Als die USA einmal 10.000e syrische
Flu00fcchtlinge aufnahmen... Hab

Usage: python pipeline_kafka_de
Availability: Available in the Pheme GitHub

Builds on and
further
develops
D2.2
"Linguistic
Pre-processing
Tools and
Ontological
Models of
Rumours and
Phemes

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

43

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

44

4.2. Integrated pipelines

4.2.1. Overview of the main processes and pipelines

This section provides a very high-level overview of some of the main processes
envisaged for the project, with special attention to the integration between different
components and the data repositories. The main pipelines implemented as part of the
integration work in the project are shown in Table 2:

Table 2. PHEME main processes
Process /
Pipeline

Responsible
Partner

Brief Description

Journalists
pipeline
(stream)

SWI /
ATOS

This pipeline is the main integrated process for the
Journalist use case. The pipeline process streams of
social media data with the aim of detecting events,
veracity scores, etc.
The Journalists pipeline is available for several
languages and Twitter and Reddit feeds. In that sense,
the Journalist pipeline makes use of the so-called
German pipeline, which in reality is a subset of
language-dependant components tailored for German
processing, but it is not a separated pipeline itself. In
this sense, the initial set of language-dependant
components was tailored for English, but we don’t
refer to these components as English pipeline.
It involves integration of functionality from many
components and algorithms developed by partners.
More info can be found in section 4.

Medical
pipeline
(stream)

KCL /
ATOS

This pipeline is the main integrated process for the
medical use case. The pipeline process streams of
social media data with the aim of detecting events,
veracity scores, anti-stigma, stance, etc.
It involves integration of functionality from many
components and algorithms developed by partners,
including specific components for the medical use
case such as anti-stigma or stance detection, among
others.
More info can be found in section 4.

Only processes that need a certain degree of integration are listed here, meaning that
processes that involve several components but are tightly integrated have not been
considered as part of the integration work carried out within WP6. For clarity sake,
Table 3 below shows a non-exhaustive list of these kinds of processes:

Table 3. Example of other processes in PHEME

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

45

Process Respons
ible
Partner

Brief Description

Data Collection ATOS Based mainly in Capture.
Available for Twitter and Reddit.

Data Annotation UWAR Annotation tool available for identification of rumours
and non-rumours
Crowdsourcing methodology established for the
annotation of tweets within conversations, using the
annotation scheme developed at PHEME
More info can be found in Deliverable 2.4

Rumor / Non-
Rumor
Classification
model

ONTO This process classifies tweets as rumour or non-rumour,
by computing the rumour probability according to a tree
classifier trained on the Journalism data.
More technical details on the classifier can be found in
Deliverable 4.3.1

Support /
Denying /
Question
Classification
model

USFD This is a process that involves the training of a model
for SDQ classification
More info in deliverable D4.3.2.

Veracity
Classification
model

USFD This is a process that involves the training of a model
for veracity classification
More info in deliverable D4.3.2.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

46

4.2.2. Journalists’ pipeline

Figure 7. Journalist pipeline components

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

47

4.2.3. Medical pipeline

Figure 8. Medical pipeline components

4.3. Pipeline monitor
WP6 has developed a simple user interface to monitor the usage of the pipelines based
on monitoring the elements of the pipelines and the Kafka topics from where they
subscribe or publish data. This monitor allows in one single page to check whether the
components of the pipeline are working fine as well as providing insights in the number
of documents processed by component in several timeline-based widgets. The monitor
offers also warning functionalities sending emails to component owners in case the
components are down, offering thus a way of reducing the response time of correcting
failures.

The monitor has been tailored for the final versions of the main PHEME pipelines,
although it can be easily configured for future extensions in terms of Kafka topics and
components.

Journalist pipeline monitoring:
http://pheme-capture.gate.ac.uk/pheme-stream-statistics/overview

Figure 9 below shows a partial view of the monitor for the journalist pipeline.

http://pheme-capture.gate.ac.uk/pheme-stream-statistics/overview

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

48

Figure 9 Journalist pipeline monitor overview

By clicking on the name of the Kafka topics on the left hand side of the monitor, several
details about the number of messages passing through the component in the pipeline
are shown, as exemplified in Figure 10:

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

49

Figure 10. Journalist pipeline monitor - Component usage timeline statistics

A similar approach has been followed for the Medical pipeline monitoring:
http://pheme-capture-2.gate.ac.uk/pheme-stream-statistics/overview

Figure 11. Medical pipeline monitor overview

The monitors are password-protected to ensure that only project partners will be granted
access to the monitoring tool. http://pheme-capture.gate.ac.uk/pheme-stream-
statistics/stats

http://pheme-capture-2.gate.ac.uk/pheme-stream-statistics/overview
http://pheme-capture.gate.ac.uk/pheme-stream-statistics/stats
http://pheme-capture.gate.ac.uk/pheme-stream-statistics/stats

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

50

5 Conclusion

The document is a working prototype and the associated description of the main
integration work done in the scope of the PHEME project, especially regarding real-
time stream pipelines tailored for the user cases combining work done by several
partners. This document therefore describes and delivers the software associated with
the final version of the Pheme integrated framework.

Special care has been taken to the integration of the different components that work
with streaming data in real time. These near-real time requirements of the use cases
have been taken into account in order to deliver the final software prototype. These
requirements include processing social network data in a streaming fashion for real-
time rumour classification and detection, dealing with cross-language and cross-media
information, and providing timely results.

From the data perspective, the document reports on the way pipelines are connecting
components using Apache Kafka as main public-subscription mechanism. This
integration approach have been followed by all partners developing components and
provided an easy, reliable and scalable framework for integration. Data flows have been
implemented that allow PHEME to acquire, pre-process, enrich, store and visualise
social media data for both use cases of the project. The document describes how data
from different social networks (mainly Twitter and Reddit) and different languages
(English, German and Bulgarian) are processed and aggregated to take care of the
challenging cross-media and cross-language aspects tackled in Pheme.

This integration effort paid off and at the end of the project the running prototypes are
fully functional and ready for evaluation.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

51

6 Bibliography and references

Pariente Lobo T., Radzimski, M., 2015 MLi Deliverable D2.1- Early design of the
reference architecture and the Hub. http://mli-project.eu/wp-
content/uploads/2014/11/MLi-D2.1-Early-design-of-the-reference-architecture-and-
the-Hub.pdf

http://mli-project.eu/wp-content/uploads/2014/11/MLi-D2.1-Early-design-of-the-reference-architecture-and-the-Hub.pdf
http://mli-project.eu/wp-content/uploads/2014/11/MLi-D2.1-Early-design-of-the-reference-architecture-and-the-Hub.pdf
http://mli-project.eu/wp-content/uploads/2014/11/MLi-D2.1-Early-design-of-the-reference-architecture-and-the-Hub.pdf

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

52

7 Annex 1. Component descriptions

7.1. Data collection framework: Capture

7.1.1. Description
ATOS provides in the context of PHEME a data collection tool named “Capture”. From
the conceptual point of view, the main element in Capture is the Data Channel. A data
channel is the way users can group query results below a single umbrella. Data channels
allow defining several queries or Data sources to social networks. All results can be
stored and indexed associated to the channel and/or streamed to an Apache Kafka
pipeline for further processing (pipeline approach).

The second element that enriches the definition of Data Channel is the Data Source. A
Data Source represents a specific web resource (i.e. Twitter, Reddit) and the definition
of queries or filters that the system will perform. Conceptually, a Data Channel could
be composed of 1 to N Data Sources, giving the possibility of making several queries
to the same or different resources in the same data channel (i.e. two different queries to
Twitter and Reddit grouped in the same data channel). However, in PHEME for
simplicity we are creating different Data Channels for each social network we are using.

In the case of Twitter, Data Channels can be defined to target the Twitter Search15 or
Twitter Streaming16 APIs. These APIs are open to developers that want to use Twitter
data feeds, and subject to the Twitter terms and conditions stated in their specifications,
The Capture Twitter acquisition module follows the guidelines stated on those terms
and conditions.

In the case of Reddit, the convention followed in PHEME is that for each sub-Reddit a
new Data Source with the required filters (keywords) will be generated. A Data Channel
may contain several of these Data Sources therefore handling several sub-Reddits under
the same Data Channel. The Capture Reddit acquisition module takes care of accessing
Reddit using the Reddit API17 respecting the limitations imposed by the social network.

7.1.2. Technical Perspective
Capture is a solution for social data collection that is based on big data technologies. It
relies on the concept of gathering content using dedicated data channels. A data channel
listens to data from different data sources (i.e. Twitter), meaning that data channels
implement configurable user queries (based on keywords, hashtags, locations, etc.) to
gather data (tweets) associated to the channel. The users are therefore able to set up
several data channels for different purposes (i.e. to listen to specific events, or search
for mentions of legal highs in Twitter), providing that the search limits provided by the
APIs of the social networks (i.e. the limits of the public Twitter search and/or streaming
APIs) are respected. Therefore, the data can be collected in very flexible ways. Capture

15 https://dev.twitter.com/rest/public/search

16 https://dev.twitter.com/streaming/overview
17 https://www.reddit.com/dev/api/

https://dev.twitter.com/rest/public/search
https://dev.twitter.com/streaming/overview

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

53

also provides a search API to query for the data collected. It is also worth mentioning
that Capture enables pipelining different analytical components both in batch or real
time, giving an extra integration flavour to the data collection tool.

Figure 12 depicts the main building blocks of the Capture module.

Figure 12. Detailed overview of the Data Collection framework (Capture)

As mentioned in this document, in the Sheffield infrastructure the persistence of the
raw social media data is switched off and the social media data is only streamed and
further enriched by other components before being stored in the Knowledge Repository
(GraphDB). However, in the KCL infrastructure, the data is only stored in the raw data
repository and not streamed to Kafka, as KCL needs that data for creating datasets and
do further experiments. Capture is using Apache HBase as storage repository combined
with a powerful indexing mechanism based on Apache Solr. This way, fast information
retrieval for the collected data (i.e. tweets) is ensured. The interaction with the
repository is done using a RESTful service layer (the Capture API). This API layer
provides methods for the management of the data channels and search, The Capture
REST API can be found in the PHEME GitHub repository.

7.1.3. Enhancements of Capture done in PHME
The Capture module has been developed based on previous work done by ATOS
coming from previous EU projects and internal funding. The result of that was the
launching of the Capturean18 Social Media monitoring tool and service in the
commercial offering of ATOS in the first quarter of 2015.

Capturean was developed completely separated from PHEME, giving as a result a big
data framework for social media data analytics. At the beginning of the project PHEME
partners’ agreed to use the underlying Capturean big data infrastructure and integration
framework based on Apache Kafka for integration purposes. Therefore, The Capture

18 http://capturean.com/

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

54

module became the initial component in the pipelines for data acquisition, while the
Apache Kafka framework became the main messaging and public-subscription
mechanism to communicate different components that have to be chained together
forming the project pipelines. To this extent, a specific deployment of the Capturean
infrastructure was deployed in a private cloud setup to this effect at the University of
Sheffield as it is explained in section 2.

The Capturean commercial tool was therefore developed completely separated from
PHEME. However, following a logical transference process related to the exploitation
of results, some of the enhancements done in PHEME to the Capture module eventually
provided an upgrade of the Capturean commercial tool, as it happened the other way
around as well.

The main work strictly related to PHEME done in the scope of the Capture component
and the Capturean-based PHEME integration frameworks can be summarized as
follows:

● User profiling: API to get the Twitter user profiles of some user handlers
retrieved from the datasets acquired, including followers and followings for
further

● New specific Twitter and Reddit data models for PHEME: The data models
used by the components integrated in the pipelines are completely different to
the ones used natively by Capture. The format is explained in section 3.

● PHEME Integration Framework: Although inherited from the underlying
infrastructure of Capturean, the way components are integrated in PHEME is
not the same as in Capturean, Capturean uses Apache Kafka for specific
messaging purposes, but the integration of its internal component is managed in
an Apache Flink cluster. In the case of PHEME, the integration framework is
done basically decoupling the components using the potential of Apache Kafka
as a public-subscription framework. PHEME components can be therefore
completely decoupled from the rest and developed in different programming
languages (i.e. Java or Python). All the work on the PHEME Integrated
Framework is therefore PHEME-specific and did not revert to Capturean.

● Inclusion of Reddit data.
● Improvements on scalability using Kafka
● More clever usage of Twitter APIs (to cover WP8 requirements)

○ Search preview of tweets while setting the queries of the Data Channel
○ Ordering data from Twitter Search API
○ Getting a sample of the historical data to speed up the process of starting

a new Data Channel
○ Improvements of the REST API, including sampling for the dashboard
○ API to generate Data Channels on demand (by the Journalist Dashboard)

7.1.4. Deployment Environment
Capture is deployable in any UNIX environment with the following characteristics:

● Tomcat 6-7 or Jetty 9
● Java 7
● Apache Kafka 0.8.2.2 or later,
● Apache HBase 1.1.1 or later,
● Hadoop 2,

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

55

● Apache Solr 5 or later
● Apache Flink 0.10 or later

The recommended minimal physical architecture is: 4 CPU cores, 8 GB RAM and 500
GB HD (extensible if the storage needs grows in time)

Capture expose two sets of user interfaces: (1) Capture REST API and (2) Capture Web
GUI.

7.1.5. Invocation guidelines
The Data Collection tool Capture is deployed as RESTful services. The signature of the
service is provided here.

Deliverable D6.1.2 showed examples on how to use the Capture REST API. The current
version of the Capture REST API available for PHEME can be found in the PHEME
GitHub.

7.2. Knowledge repository: GraphDB

7.2.1. Description
The Knowledge repository has been explained in detail in section 2. This section
expands the GraphDB description with its deployment and invocation guidelines.

7.2.2. Deployment Environment

GraphDB is deployable at any Linux environment with:

● Tomcat 7
● Java 8

The minimal physical architecture required is: 8 cores, 20 GB RAM, 100 GB SSD.

GraphDB expose two sets of user interfaces: (1) Openrdf-WorkBench and (2) GraphDB
Workbench and a SPARQL endpoint.

7.2.3. Invocation Guidelines

GraphDB is currently deployed at ONTO with Openrdf-WorkBench, GraphDB
Workbench and SPARQL endpoint, and can be accessed at http://pheme-
repo.ontotext.com.

The following ontology files are deployed:

● <file://PhemeOntology-v2.ttl>
● <file://Travis-Allen-Twitter-Ontology2.owl>
● <file://atc2en_de_es.ttl>

After opening the repository link one may select a predefined query under
SPARQL/Query.

http://pheme-capture.gate.ac.uk/CaptureREST/application.html

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

56

Figure 13. SPARQL query interface.

GraphDB reveals the results in a set of interfaces for RDF navigation and exploration,
as shown in Figure 14 and Figure 15 below.

Figure 14. RDF query result set.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

57

Figure 15. PHEME ontology navigation.

Sample queries that would help to explore further the currently deployed ontologies,
including the rumour classification scheme and the tweeter metadata vocabulary, are
shown below.

###Pheme classes
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX pheme: <http://www.pheme.eu/ontology/pheme#>
select ?a ?label ?comment {
?a rdfs:subClassOf pheme:Pheme .
?a rdfs:label ?label.
?a rdfs:comment ?comment.
}

###ATC Classes
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
select * {
?a rdfs:subClassOf atc:A01.
?a rdfs:label ?label.

}

###Information Content entities
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
select * {
?a rdfs:subClassOf <http://purl.obolibrary.org/obo/IAO_0000030>.
?a rdfs:comment ?comment
}

###All Tweet subclasses
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
select * {

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

58

?a rdfs:subClassOf
<http://www.semanticweb.org/travis/ontologies/2013/10/ontologicalengineeringtwitte
r#entity>.
OPTIONAL {
?a rdfs:comment ?comment.
}
OPTIONAL {
?a rdfs:label ?label.
}
}

Example request to the SPARQL endpoint of GraphDB that is equivalent to
“Information Content entities” query is narrated below.

Sparql request:
http://pheme-
repo.ontotext.com/repositories/pheme?query=PREFIX+rdfs%3A+%3Chttp%3A%2F
%2Fwww.w3.org%2F2000%2F01%2Frdf-
schema%23%3E%0D%0Aselect+*+{%0D%0A++++%3Fa+rdfs%3AsubClassOf++
%3Chttp%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FIAO_0000030%3E.%0D%0A
++++%3Fa+rdfs%3Acomment+%3Fcomment%0D%0A}&implicit=true

Response (partial):
<?xml version='1.0' encoding='UTF-8'?>
<sparql xmlns='http://www.w3.org/2005/sparql-results#'>
 <head>
 <variable name='a'/>
 <variable name='comment'/>
 </head>
 <results>
 <result>
 <binding name='comment'>
 <literal>an information content entity is an entity that is generically dependent
on some artifact and stands in relation of aboutness to some entity -IAO</literal>
 </binding>
 <binding name='a'>
<uri>http://purl.obolibrary.org/obo/IAO_0000030</uri>
 </binding>
 </result>

Below we show an example of Sparql query that illustrates the value of integrating
LOD knowledge with the PHEME ontology. We want to retrieve Tweets that are related
to the location New Jersey. Ideally, we expect to retrieve not only Tweets that mention
New Jersey directly, but also Tweets that mention cities located in the New Jersey area.

PREFIX pubid: <http://ontology.ontotext.com/resource/>
PREFIX pheme: <http://www.pheme.eu/ontology/pheme#>
PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX geo-ont: <http://www.geonames.org/ontology#>

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

59

PREFIX dlpo: <http://www.semanticdesktop.org/ontologies/2011/10/05/dlpo>
select * {
 #Select New Jursey state
 ?parent pub:preferredLabel "New Jersey"@en.
 ?parent pub:exactMatch ?geoparent.
 ?geoparent a geo-ont:Feature.

 #Now select tweets mentioned with places inside New Jersey.
 ?t pheme:containsMention ?a.
 ?a pheme:inst ?pub.
 ?pub pub:preferredLabel ?pubLabel.
 ?pub pub:exactMatch ?geo.
 ?geo geo-ont:parentADM1 ?geoparent.
 ?t
<http://www.semanticdesktop.org/ontologies/2011/10/05/dlpo#textualContent> ?text.
} limit 100

Availability: ONTO granted access to GraphDB to project partners during the project
duration in the PHEME installations. The access will continue at least for one year after
the duration of the project. In case of commercialization, it will be done based on
specific agreements between partners and customers.

7.3. Dashboard API

The PHEME visual dashboard reported in Deliverable D5.2.2 is based on a multiple
coordinated view approach to explore the veracity intelligence extracted by the content
analytics methods from WP2, WP3 and WP4. The dashboard provides modular and
scalable update mechanisms, advanced query capabilities to reveal supportive and
critical voices, and visual tools to reveal the context and diffusion of emerging rumours.

To foster collaboration and leverage synergies between PHEME and the ASAP FP7
project,19 the data interchange between the dashboard and other PHEME work
packages is based on an extended version of the webLyzard API (originally published
as part of the ASAP Deliverable 6.2). From the API components, the following are
relevant in the context of PHEME:

● Document API – ingests unstructured data from social media sources from T6.1
The main API objects are Documents, Sentences and Annotations – the latter
are provided by WP2 and WP3, using PHEME-specific API extensions to
support the required metadata elements.

● Search API – returns a set of query results in the form of unstructured text
documents. The main object is Query.

● Embeddable Visualization API – represents a standardized way to integrate
individual visualizations in third-party applications (as compared to using the

19 ASAP = Adaptive Scalable Analytics Platform (www.asap-fp7.eu); The use of the webLyzard API not
only avoids redundant efforts, but also supports joint exploitation efforts; specific opportunities arise
from pursuing a Visualization-as-a-Service (VaaS) approach, where Pheme components such as the
cluster map and the keyword graph can be offered as part of an integrated framework.

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

60

full dashboard). The main object is Visualization, which is typically rendered
based on the results of a Query.

To model cross-referencing between documents and represent threaded dialogs, we
have extended the document model to support document relations of various types, and
have exposed the new structure via the Document API. With this addition, one can
specify linkage information related to a document to be ingested into the PHEME
dashboard by providing the relation type and the target URL through the JSON payload.
On request, the API tries to match the provided target URL against existing documents
contained in the PHEME metadata repository, resolving link targets to internal IDs
where available. The document relation extension has been designed in a generic
manner, enabling reasoning on the metadata document level – e.g., outgoing and
incoming links for opinion mining, information diffusion paths via temporal linkage
analysis, etc.

To facilitate API usage, the documentation20 has been published using the Swagger
toolkit.21 This page represents a central hub to connect the documentation for all API
endpoints in a standardized way, providing clear and reliable guidance for the technical
partners working on WP2-WP6. In addition, code examples allow developers to quickly
test and validate client code against the API endpoints.

Below is an example document representation (pheme_document.json) including the
Pheme enrichments encoded as ‘document features’ prepared for ingestion in the
PHEME Dashboard.

{
 "content" : "Cat called at in my workout gear walking to my car. Of
course. I ignore and they cat call even louder like I'm the one being an as
shole",
 "content_type" : "text/plain",
 "repository_id" : "pheme.weblyzard.com/api",
 "uri" : "https://twitter.com/KSchmerbach/status/807050199617118208",
 "title" : "Tweet by KSchmerbach",
 "features" : {
 "anti_stigma" : 0,
 "advert" : 0,
 "event_cluster" : [167956],
 "sdqc_type" : "support",
 "sdqc_confidence" : 0.5073472531352273,
 "veracity_score" : 0.0,
 "veracity_confidence" : 0.8022541519302714
--
 "meta_data" : {
 "published_date" : "2016-12-09T02:32:16Z",
 "user_screen_name" : "KSchmerbach",
 "tweet_id" : "807050199617118208",
 "twitter_lang_id" : "en"
 }
}

The CURL command to push this document to the webLyzard repository is as
follows:

20 api.weblyzard.com
21 www.swagger.io

http://pheme.weblyzard.com/api
https://twitter.com/KSchmerbach/status/807050199617118208

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

61

password = "superSecretPassword"
asap_token = curl -i -u api@pheme.weblyzard.com:$password
https://api.weblyzard.com/0.1/token
curl -H "Authorization: Bearer "$asap_token -H "Content-Type:
application/json" -X POST --data @pheme_document.json
https://api.weblyzard.com/0.1/documents/asap.weblyzard.com/api

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

62

8 Annex 2. RDF properties of important PHEME concepts

8.1. RDF description of the PhemeMention concept type
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="http://www.pheme.eu/ontology/pheme#phemeMention-
253b0906a771423a8a8b506ce853c043">

<confidence xmlns="http://www.pheme.eu/ontology/pheme#"
rdf:datatype="http://www.w3.org/2001/XMLSchema#double">0.0</confidence>

 <endnode xmlns="http://www.pheme.eu/ontology/pheme#">91</endnode>
 <generated xmlns="http://www.pheme.eu/ontology/pheme#">pheme</generated>
 <mentionType xmlns="http://www.pheme.eu/ontology/pheme#">LOCATION</mentionType>
 <name xmlns="http://www.pheme.eu/ontology/pheme#">Syria</name>
 <startnode xmlns="http://www.pheme.eu/ontology/pheme#">86</startnode>
 <rdf:type rdf:resource="http://www.pheme.eu/ontology/pheme#PhemeMention"/>
</rdf:Description>
</rdf:RDF>

8.2. RDF description of the UserAccount concept type
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="http://www.pheme.eu/ontology/pheme#user-1264291556">
 <description xmlns="http://rdfs.org/sioc/ns#">JJ. McCabe and Fallin'Angel..are signed to Flicknife

Records UK.. Rock and Roll with a twist..</description>
<twitterFollowersCount xmlns="http://www.pheme.eu/ontology/pheme#" rdf:datatype=

"http://www.w3.org/2001/XMLSchema#long">3623</twitterFollowersCount>
<twitterFriendsCount xmlns="http://www.pheme.eu/ontology/pheme#" rdf:datatype=

"http://www.w3.org/2001/XMLSchema#long">1279</twitterFriendsCount>
<twitterStatusesCount xmlns="http://www.pheme.eu/ontology/pheme#" rdf:datatype=

"http://www.w3.org/2001/XMLSchema#long">131709</twitterStatusesCount>
<twitterUserAccountLocation xmlns="http://www.pheme.eu/ontology/pheme#">

</twitterUserAccountLocation>
 <twitterUserVerified xmlns="http://www.pheme.eu/ontology/pheme#">false</twitterUserVerified>
 <rdf:type rdf:resource="http://rdfs.org/sioc/ns#UserAccount"/>

<accountName xmlns="http://xmlns.com/foaf/0.1/">JJMCCABE2</accountName>
<depiction xmlns="http://xmlns.com/foaf/0.1/">
http://pbs.twimg.com/profile_images/800369865236353024/UhEGNqFM_normal.jpg</depiction>

 <name xmlns="http://xmlns.com/foaf/0.1/">JJMCCABE</name>
</rdf:Description>
</rdf:RDF>

8.3. RDF description of the Tweet concept type
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="http://www.pheme.eu/ontology/pheme#tweet-824542446562537472">

<has_container xmlns="http://rdfs.org/sioc/ns#" rdf:resource=
"http://www.pheme.eu/ontology/pheme#thread-824542446562537472"/>

<has_creator xmlns="http://rdfs.org/sioc/ns#" rdf:resource=
"http://www.pheme.eu/ontology/pheme#user-48662881"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/0ac2782215424cfb9477d4c784f44e74"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/0febafc697bc4ec9b9b33843133611e5"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/20a9086aec1e4f75a056c2c81a9b04bb"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/24ee9b20ae9b44e6a1027fd2d20cc371"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/3a11bde69258481bb7f145845a70cde9"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/6a0ff733a05d4c9cb203c10efd4b3e81"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/6c79be3c97224b4f8ed9f5c6ba3d6eb2"/>

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

63

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/7c0005a91ed9404ca5aea24d5831ea01"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/7e09bba7ec7643c79f0be4418a5b3b1d"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/81bb1a466b0f48fcb8594c678abb20cb"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/9a3918155d9945c6833a6c68bb6f44af"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/bda8e5e112f34d9a93bc295b066fa3a4"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/c64aaf7b31914b7582f117ddd6186b71"/>

<containsMention xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=
"http://www.pheme.eu/resources/pheme/f06431dbf94a4212842bca8599255d91"/>

<createdAt xmlns="http://www.pheme.eu/ontology/pheme#" rdf:datatype=
"http://www.w3.org/2001/XMLSchema#dateTime">2017-01-

26T11:00:13.000+02:00</createdAt>
 <dataChannel xmlns="http://www.pheme.eu/ontology/pheme#">d6dacda2</dataChannel>
 <eventClusterTitle xmlns="http://www.pheme.eu/ontology/pheme#">A1OQ: RT @ianbremmer: Trump
to

block visas to anyone from Iran Iraq Libya Somalia Sudan Syria Yemen 9/11 bombers from
Saudi Arabia 15 UAE 2 Egyp?</eventClusterTitle>

<eventId xmlns="http://www.pheme.eu/ontology/pheme#">2333059</eventId>
<hasCrossMediaLink xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=

"http://www.pheme.eu/ontology/pheme#crossmedialink-824542446562537472"/>
<hasEvidentiality xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=

"http://www.pheme.eu/ontology/pheme#no-evidence"/>
<isRumour xmlns="http://www.pheme.eu/ontology/pheme#">false</isRumour>
<langid xmlns="http://www.pheme.eu/ontology/pheme#">en</langid>
<langidProbability xmlns="http://www.pheme.eu/ontology/pheme#" rdf:datatype=

"http://www.w3.org/2001/XMLSchema#double">0.9999999996409741</langidProbability>
<phemeEntity xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=

"http://www.pheme.eu/ontology/pheme#phemeMention-
01c537cdf41143d3897aaacb21aaaebc"/>
<phemeEntity xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=

"http://www.pheme.eu/ontology/pheme#phemeMention-
0420d05b47dd4e16ae05c09a717fa80c"/>
<phemeEntity xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=

"http://www.pheme.eu/ontology/pheme#phemeMention-
37a46a55fe7743239939a06b60f8039e"/>
<phemeEntity xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=

"http://www.pheme.eu/ontology/pheme#phemeMention-
5d6553d6e5ee4c5884a0365f83a6b2f0"/>
<phemeEntity xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=

"http://www.pheme.eu/ontology/pheme#phemeMention-
c0ef70aa1e0e436a8cce43bf3f423d60"/>
<retweetOfId xmlns="http://www.pheme.eu/ontology/pheme#">824344479578681344</retweetOfId>
<rumourCoefficient xmlns="http://www.pheme.eu/ontology/pheme#" rdf:datatype=

"http://www.w3.org/2001/XMLSchema#double">2.79787565845573E-
75</rumourCoefficient>
<sdq xmlns="http://www.pheme.eu/ontology/pheme#">support</sdq>
<sdqProbability xmlns="http://www.pheme.eu/ontology/pheme#" rdf:datatype=

"http://www.w3.org/2001/XMLSchema#double">0.5203752982655573</sdqProbability>
<sourceReputation xmlns="http://www.pheme.eu/ontology/pheme#" rdf:datatype=

"http://www.w3.org/2001/XMLSchema#double">0.2212410160548547</sourceReputation>
<sourceType xmlns="http://www.pheme.eu/ontology/pheme#">twitter</sourceType>
<userLocations xmlns="http://www.pheme.eu/ontology/pheme#" rdf:resource=

"http://www.pheme.eu/resources/pheme/cac04244c529431a8266c5554128b5f1"/>
<veracity xmlns="http://www.pheme.eu/ontology/pheme#">true</veracity>
<veracityScore xmlns="http://www.pheme.eu/ontology/pheme#" rdf:datatype=

"http://www.w3.org/2001/XMLSchema#double">1.0</veracityScore>
<version xmlns="http://www.pheme.eu/ontology/pheme#">v8</version>

 <textualContent xmlns="http://www.semanticdesktop.org/ontologies/2011/10/05/dlpo#">RT
@ianbremmer:

Trump to block visas to anyone from
Iran

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

64

Iraq
Libya
Somalia
Sudan
Syria
Yemen

9/11 bombers from
Saudi Arabia 15
UAE 2
Egyp?</textualContent>

<rdf:type rdf:resource="http://www.pheme.eu/ontology/pheme#SourceTweet"/>
<rdf:type rdf:resource="http://www.pheme.eu/ontology/pheme#Tweet"/>

</rdf:Description>
</rdf:RDF>

8.4. RDF description of the CrossMediaLink concept type

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="http://www.pheme.eu/ontology/pheme#crossmedialink-824542446562537472">

<crossCleanedTweetText xmlns="http://www.pheme.eu/ontology/pheme#" xml:lang="en">Donald
Trump Just

Offered Putin Exactly What He Wants URL</crossCleanedTweetText>
<crossKeywordCandidate xmlns="http://www.pheme.eu/ontology/pheme#" xml:lang="en">Lavrov:

We may
improved relations U.S. Trump</crossKeywordCandidate>

<crossKeywordCandidate xmlns="http://www.pheme.eu/ontology/pheme#" xml:lang="en">relations
U.S.</crossKeywordCandidate>

<crossLinkedArticleDomain xmlns=
"http://www.pheme.eu/ontology/pheme#">www.politico.com</crossLinkedArticleDomain>

 <crossLinkedArticleHeadline xmlns="http://www.pheme.eu/ontology/pheme#"
xml:lang="en">Lavrov: We

may have improved relations with U.S. under Trump -
POLITICO</crossLinkedArticleHeadline>
<crossLinkedUrl xmlns=

"http://www.pheme.eu/ontology/pheme#">http://www.politico.com/story/2017/01/russia-us-
relations-

trump-kremlin-233673?utm_source=dlvr.it&utm_medium=twitter</crossLinkedUrl>
<crossPresenceOfContradiction xmlns=

"http://www.pheme.eu/ontology/pheme#">False</crossPresenceOfContradiction>
<crossPresenceOfLinkedArticle xmlns=

"http://www.pheme.eu/ontology/pheme#">True</crossPresenceOfLinkedArticle>
<crossRelatedArticleHeadlines xmlns="http://www.pheme.eu/ontology/pheme#"

xml:lang="en">Donald
Trump promises post-Brexit Britain a 'fair' trade deal</crossRelatedArticleHeadlines>

<crossRelatedArticleHeadlines xmlns="http://www.pheme.eu/ontology/pheme#"
xml:lang="en">Lavrov says

Russia keen for dialogue with Trump</crossRelatedArticleHeadlines>
<crossRelatedArticleHeadlines xmlns="http://www.pheme.eu/ontology/pheme#"

xml:lang="en">Trump calls
NATO 'obsolete,' pitches Russia nuke deal, hits Merkel over refugee crisis | The Japan
Times</crossRelatedArticleHeadlines>

<crossRelatedArticleHeadlines xmlns="http://www.pheme.eu/ontology/pheme#"
xml:lang="en">Trump is

Putin's mouthpiece</crossRelatedArticleHeadlines>
<crossRelatedArticleHeadlines xmlns="http://www.pheme.eu/ontology/pheme#" xml:lang="en">Why

Europe
Is Worried About Donald Trump's Latest Remarks</crossRelatedArticleHeadlines>

<crossSummaryOfLinkedArticle xmlns="http://www.pheme.eu/ontology/pheme#"
xml:lang="en">Doubling

down on his goal to upend the established world order and remake it in his own image—one that

D6.1.3 / Pheme Integrated Veracity Framework - v2.0

65

looks particularly like told two foreign newspapers over the weekend that he would consider
lifting

sanctions on Russia and believes that the NATO alliance, put in place to check Russian influence
in

the wake of WWII, is obsolete.</crossSummaryOfLinkedArticle>
<crossTweetId

xmlns="http://www.pheme.eu/ontology/pheme#">821334259545690116</crossTweetId>
<rdf:type rdf:resource="http://www.pheme.eu/ontology/pheme#CrossMediaLink"/>

</rdf:Description>
</rdf:RDF>

	Executive summary
	Contents
	Index of Figures

	1 Relevance to PHEME
	1.1. Purpose of this document
	1.2. Relevance to project objectives
	1.3. Relation to other work packages
	1.4. Structure of the document

	2 PHEME Veracity Framework Architecture and Integration Approach
	2.1. Overview of the architecture
	2.2. Software Integration approach
	2.2.1. PHEME IT infrastructure
	2.2.2. Integration using Apache Kafka
	2.2.3. Other possible integration mechanisms
	2.2.4. Scalability and performance

	3 Data flow and repositories
	3.1. Introduction
	3.2. Data flow in PHEME
	3.2.1. Data flow
	3.2.2. Kafka message format guidelines
	3.2.3. PHEME Knowledge Integration

	3.3. Cross-media and cross-language data integration approach
	3.3.1. Cross-media
	3.3.1.1 Twitter data
	3.3.1.2 Reddit data

	3.3.2. Cross-language

	4 Components and pipelines
	4.1. Overview of the components
	4.2. Integrated pipelines
	4.2.1. Overview of the main processes and pipelines
	4.2.2. Journalists’ pipeline
	4.2.3. Medical pipeline

	4.3. Pipeline monitor

	5 Conclusion
	6 Bibliography and references
	7 Annex 1. Component descriptions
	7.1. Data collection framework: Capture
	7.1.1. Description
	7.1.2. Technical Perspective
	7.1.3. Enhancements of Capture done in PHME
	7.1.4. Deployment Environment
	7.1.5. Invocation guidelines

	7.2. Knowledge repository: GraphDB
	7.2.1. Description
	7.2.2. Deployment Environment
	7.2.3. Invocation Guidelines
	7.3. Dashboard API

	8 Annex 2. RDF properties of important PHEME concepts
	8.1. RDF description of the PhemeMention concept type
	8.2. RDF description of the UserAccount concept type
	8.3. RDF description of the Tweet concept type
	8.4. RDF description of the CrossMediaLink concept type

