
DELIVERABLE SUBMISSION SHEET

To: Susan Fraser (Project Officer)
 EUROPEAN COMMISSION
 Directorate-General Information Society and Media
 EUFO 1165A
 L-2920 Luxembourg

From:

Project acronym: PHEME Project number: 611233

Project manager: Kalina Bontcheva

Project coordinator The University of Sheffield (USFD)

The following deliverable:
Deliverable title: Algorithms for Detecting Misinformation and Disinformation: Final

Version
Deliverable number: D4.3.2

Deliverable date: 30 November 2016
Partners responsible: The University of Sheffield (USFD)

Status: Public Restricted Confidential

is now complete. It is available for your inspection.
 Relevant descriptive documents are attached.

The deliverable is:
 a document
 a Website (URL:)
 software (...........................)
 an event
 other (.....Prototype..........)

Sent to Project Officer:
Susan.Fraser@ec.europa.eu

Sent to functional mail box:
CNECT-ICT-611233@ec.europa.eu

On date:
02 December 2016

mailto:Susan.Fraser@ec.europa.eu

FP7-ICT Collaborative Project PHEME (No. 611233)

Computing Veracity Across Media, Languages, and Social Networks

D4.3.2 Algorithms for Detecting
Misinformation and

Disinformation: Final Version

Ahmet Aker, Michal Lukasik (University of Sheffield),
Arkaitz Zubiaga (University of Warwick)

Kalina Bontcheva (University of Sheffield),
Trevor Cohn (University of Melbourne)

Abstract.
FP7-ICT Collaborative Project ICT-2013-611233 PHEME
Deliverable D4.3.2 (WP4)

This deliverable describes methods for detecting misinformation in social media streams.
We document the development and evaluation of three separate components that form this
misinformation detection process: rumour detection, rumour stance classification and rumour
veracity classification.

Keyword list: rumour detection; rumour classification; veracity classification

Copyright c© 2016 University of Sheffield and Ontotext

Project
Delivery Date
Contractual Date
Nature
Reviewed By
Web links
Dissemination

PHEME No. 611233
December 2, 2016
November 30, 2016
Prototype
Ivelina Nikolova, Maria Liakata
http://www.pheme.eu
PU

PHEME Consortium

This document is part of the PHEME research project (No. 611233), partially funded by the FP7-ICT Programme.

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Contact person: Kalina Bontcheva
E-mail: K.Bontcheva@dcs.shef.ac.uk

Universitaet des Saarlandes
Campus
D-66041 Saarbrücken
Germany
Contact person: Thierry Declerck
E-mail: declerck@dfki.de

MODUL University Vienna GMBH
Am Kahlenberg 1
1190 Wien
Austria
Contact person: Arno Scharl
E-mail: scharl@modul.ac.at

Ontotext AD
Polygraphia Office Center fl.4,
47A Tsarigradsko Shosse,
Sofia 1504, Bulgaria
Contact person: Georgi Georgiev
E-mail: georgiev@ontotext.com

ATOS Spain SA
Calle de Albarracin 25
28037 Madrid
Spain
Contact person: Tomás Pariente Lobo
E-mail: tomas.parientelobo@atos.net

King’s College London
Strand
WC2R 2LS London
United Kingdom
Contact person: Robert Stewart
E-mail: robert.stewart@kcl.ac.uk

iHub Ltd.
NGONG, Road Bishop Magua Building
4th floor
00200 Nairobi
Kenya
Contact person: Rob Baker
E-mail: robbaker@ushahidi.com

SwissInfo.ch
Giacomettistrasse 3
3000 Bern
Switzerland
Contact person: Peter Schibli
E-mail: Peter.Schibli@swissinfo.ch

The University of Warwick
Kirby Corner Road
University House
CV4 8UW Coventry
United Kingdom
Contact person: Rob Procter
E-mail: Rob.Procter@warwick.ac.uk

Executive Summary

Social media is a rich source of news, with the caveat that it is also rife with rumours.
Despite the challenge that rumours posit in mining social media for news, one can take
advantage of the numerous reactions of the community of users to make sense of the
rumours and try to determine their veracity.

This deliverable focuses on the challenge of detecting and classifying rumours in so-
cial media, as well as trying to determine their veracity value. The focus is on Twitter as
the vehicle for viral rumour spreading for two reasons. Firstly, the availability of already
annotated datasets makes research and experimentation significantly easier. Secondly,
and more importantly, Twitter has become the de-facto standard platform for sharing this
type of information, especially in crises or emergency situations. Even practitioners such
as journalists are continually using this social platform to unwittingly initiate rumours, as
happened in a recent case where a BBC reporter tweeted about the Queen being dead.

Work in this deliverable is organised in three rumour analysis tasks, which together
form the rumour classification process: rumour detection, rumour stance classification
and veracity classification. In the first component, we deal with the challenge of classify-
ing tweet threads into rumourous versus non-rumourous, based on linguistic, social, and
spread pattern information. Use of contextual characteristics, such as preceding tweets
learnt throughout the event, show very promising results substantially boosting the clas-
sifier’s performance by over 40%.

Next we report experiments on rumour stance classification. Individual tweets dis-
cussing a rumour are classified as supporting, denying, querying or commenting on the
rumour. We do in two different settings: treating tweets as an isolate unit, and using
conversational features of Twitter to leverage context. While the latter shows substan-
tial improvements over the use of tweets in isolation, it also presents the caveat that it is
not straightforward to collect complete conversations from Twitter’s API in a streaming
scenario, for which we suggest a hybrid approach.

In the third and final component, we discuss the development of a system for rumour
veracity classification. Using features inherent in a tweet, and without needing to leverage
additional context, we show that our system can achieve accuracy values around 90%.

The three components make use of language- and domain-independent features, which
facilitates their application to similar rumour classification tasks in other languages and
domains. Two of the component have, in fact, been integrated into the GATE open-source
text analytypics platform (http://gate.ac.uk) as reusable open-source plugins.

Software and data used in this deliverable are publicly available from the PHEME

D4.3.2 Algorithms for Detecting Misinformation and Disinformation: Final Version

software download web page (https://www.pheme.eu/software-downloads/), in order to
promote replicability and take-up.

PHEME/2016/D4.3.2/v1.0 December 2, 2016 2

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Research questions . 3
1.3 Relevance to PHEME . 4

1.3.1 Relevance to Project Objectives 4
1.3.2 Relation to Other Workpackages 4

1.4 Outline of the Deliverable . 4

2 Detection of mis- and dis-information 5
2.1 Rumour detection . 5

2.1.1 Related Work . 6
2.1.2 Method . 7
2.1.3 Results . 10

2.2 Rumour stance classification . 12
2.2.1 Related work . 12
2.2.2 Method . 14
2.2.3 Experimental setup and results 17
2.2.4 GATE plugin . 19

2.3 Conversational rumour stance classification 20
2.3.1 Problem definition . 20
2.3.2 Experiment Design . 21
2.3.3 Results . 23

2.4 Veracity classification . 25
2.4.1 Related work . 26
2.4.2 Method . 29
2.4.3 Experimental setup and results 29
2.4.4 GATE plugin . 30

3 Discussion 32

1

Chapter 1

Introduction

From a business and government point of view there is an increasing need to interpret and
act upon information from large-volume media, such as Twitter, Facebook, and newswire.
However, knowledge gathered from online sources and social media comes with the major
caveat that it cannot always be trusted. Below we show some of the many examples why
this might be a serious problem. This serves as motivation for our work, which is on
distinguishing misinformation from accurate reports in social media posts.

1.1 Motivation

Ratkiewicz et al. (2011) show a particular type of abuse called political astroturf. Polit-
ical astroturf are campaigns targeted at misleading the public, that a particular piece of
information is spreading spontaneously, when in fact it is coordinated by a single person
or organisation. As the authors posit, multiple political elections have been influenced
by such means, such as Barrack Obama’s 2008 presidential campaign or Howard Dean’s
failed 2004 presidential candidacy. The possible reason for this, according to the authors,
is that catchiness and repeatably are the drivers of information diffusion, rather than truth-
fulness.

Mendoza et al. (2010a) study the disaster event which is an earthquake in Chile in
2010. Authors point at the fact that false rumours were spreading at this time and claim
that it contributed to the general chaos in the region, given the absence of first hand infor-
mation from professionally curated and moderated sources. As an example, false rumours
spread that a volcano had become active and there was a tsunami warning in Valparaiso.
As in these cases, the distinction of verified news and false rumours is key in many situa-
tions.

A few very general examples of what may be achieved using disinformation are given
by Karlova and Fisher (2012). ”People can use disinformation to harness influence over
others (e.g., insinuating knowledge of personal information). Governments can use dis-

2

CHAPTER 1. INTRODUCTION 3

information to exercise control over a populace. Businesses can use disinformation to
maintain or repair their own reputation or to damage the reputation of a competitor”.
Being able to detect misinformation and disinformation, may present ”opportunities for
meaningful engagement, public awareness and education, and commercial information
service provision”.

The overall aim is to investigate the problem of veracity estimation of social media
content. The information type to be analysed in the project at hand are rumours, formally
defined in next chapter. We can distinguish two types of veracity. The first of them is
subjective, that is what is the collective judgment of veracity from an individual’s or a
group’s perspective. The second type is the ground truth, which refers to what is the
actual truth value behind a story. Both of these phenomena are very useful. For example,
in marketing the collective judgments are very useful, whereas in journalism the ground
truth might be more useful. We aim to analyse both of them. Later, we refer to the
connection between them.

Here we aim to determine the veracity of social media content in both its meanings,
i.e. subjective and ground truth. Analysis may reveal interesting characteristics of in-
formation from social media, in particular we may be able to identify the features that
reflect the different types of veracity. Prediction would be of great value to society, as
false information could be filtered out.

Moreover, our aim is to create a system that would automatically assess veracity of a
rumour thread as a whole (which consists of multiple sources and conversations) and the
veracity of a single source. Our second, more specific aim, is to model rumour dynamics,
by exploring temporal patterns.

1.2 Research questions

In more detail, this deliverable addresses the following research questions:

• Rumour detection: Can rumourous post threads/clusters be distinguished reliably
from non-rumourous ones using a classifier?

• Rumour stance classification: For each post classified as rumourous, can we de-
termine whether it confirms, denies, questions or simply makes a comment on the
particular rumour?

• Rumour veracity classification: How accurately can rumour veracity be esti-
mated, based on the post-level belief classification information from the previous
step?

CHAPTER 1. INTRODUCTION 4

1.3 Relevance to PHEME

The PHEME project aims to detect and study the emergence and propagation of rumours
in social media. The detection of mis- and disinformation, in particular, is an essential
challenge which is being addressed here. This deliverable comprises results arising from
research in Task T4.3 on methods for detecting misinformation.

1.3.1 Relevance to Project Objectives

Developing methods for the detection of rumours (or phemes) as they emerge in social
media, is the goal of the PHEME project. The first step of that process is to separate
rumorous from non-rumorous conversations, followed by post-level belief classification
and veracity estimation. The ability to model rumour dynamics is also a key project
objective.

1.3.2 Relation to Other Workpackages

WP4 builds on the linguistic tools arising from WP2, which are used to derive features for
the machine learning models described in this deliverable. It also builds on work in Task
3.3. on identifying stories and conversations through clustering. This forms the input
to the rumour vs non-rumour detection experiments reported here, and the subsequent
post-level and veracity classification work.

The data used in experiments here has been gathered and annotated as part of WP8
and WP2 at present, with subsequent experiments planned on WP7 data.

The results from the methods presented here will be visualised in the PHEME dash-
board (WP5), while the methods themselves are being integrated within the PHEME inte-
grated platform for near real-time processing.

1.4 Outline of the Deliverable

The rest of this deliverable is organised as follows. Next, in chapter 2 we describe the de-
velopment, testing and evaluation of the three different components that form our misin-
formation detection system. These three components are organised into separate sections,
describing first our rumour detection component in Section 2.1, then our stance classifi-
cation components, for isolate tweets in Section 2.2 and for conversations in Section 2.3,
and finally the veracity classification component in Section 2.4. The deliverable follows
with a discussion of our achievements and limitation of the components in Chapter 3.

Chapter 2

Detection of mis- and dis-information

Tweets are used to spread rumours which can be true or false. In terms of false the infor-
mation conveyed is either a type of misinformation or disinformation. These information
types have been defined in the earlier deliverable D4-3-1 as such that misinformation is
information that is inaccurate but where the author makes an honest mistake, and disin-
formation is information that is stated deliberately wrong.

It is desirable to have an automated process that automatically flags rumours, i.e. de-
termines that the content a tweet constitutes a rumour. Classifying tweets as rumours is
also referred to as rumour retrieval or rumour detection. Once a tweet is flagged as a ru-
mour the next step is to determine the stance of different tweets towards the same rumour,
with the aim of aggregating the stances of different authors. This task is referred to as be-
lief classification or rumour stance classification. Finally, it is desired to verify whether a
rumour is true or false which is referred to as credibility or veracity classification. In this
chapter we define the whole pipeline that includes rumour detection (Section 2.1), stance
classification (for isolate tweets in Section 2.2 and for conversational threads in 2.3) and
veracity classification (Section 2.4).

2.1 Rumour detection

The rumour detection task as that in which, given a timeline of tweets, the system has to
determine which of the tweets are reporting rumours, and hence are spreading information
that is yet to be verified. The identification of rumours is the initial step whose output
feeds the subsequent stage of the pipeline, the stance classification task. Formally, the task
takes an evolving timeline of tweets TL = {t1, ..., t|TL|} as input, and the classifier has
to determine whether each of these tweets, ti, is a rumour or a non-rumour by assigning a
label from Y = {R,NR}.

Hence, we formulate the task as a binary classification problem, whose performance
is evaluated by computing the precision, recall and F1 scores for the target category, i.e.,

5

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 6

rumours.

In what follows in Section 2.1.1 we summarise previous work on rumour detection.
Next, we describe the rumour detection approaches we study in Section 2.1.2. In Section
2.1.3 we present and analyse the results.

2.1.1 Related Work

To the best of our knowledge, the only published work that has tackled the detection of
new rumours is that by Zhao et al. (2015). Their approach builds on the assumption that
rumours will provoke tweets from skeptical users who question or enquire about their
veracity; the fact that a piece of information has a number of querying tweets associated
with it would then imply that the information is rumourous. The authors created a manu-
ally curated list of five regular expressions (e.g., “is (that | this | it) true”), which are used
to identify querying tweets. These querying tweets are then clustered by similarity, each
cluster being ultimately deemed a candidate rumour. It was not viable for the authors
to evaluate by recall, but their best approach achieved 52% and 28% precision for two
datasets. While this work builds on a sensible hypothesis and presents a clever approach
to tackling the rumour detection task, we foresee three potential limitations: (1) being
based on manually curated regular expressions the approach may not generalise well, (2)
the hypothesis might not always apply and hence lead to low recall as, for example, cer-
tain rumours reported by reputable media are not always questioned by the general public
Zubiaga et al. (2016), and (3) it takes no account of the context that precedes the rumour,
which can give additional insights into what is going on and how a piece of information
can be rumourous in that context (e.g., the rumour that a gunman is on the loose, when
the police has not confirmed it yet, is easier to be deemed a rumour if we put it into the
context of the preceding events, such as additional reports that the identity of the gun-
man is unknown and the reasons that motivated the shooting have not been found out).
As a more flexible rumour detection approach in the context of breaking news, we intro-
duce a context-aware rumour detection system that uses a sequential classifier to examine
the reporting dynamics during breaking news to determine if a new piece of information
constitutes a rumour.

Other work in rumour detection Qazvinian et al. (2011); Hamidian and Diab (2015b,
2016) has been limited to finding rumours known a priori. A classifier is fed with a set
of predefined rumours (e.g., Obama is muslim), which then classifies new tweets as being
related to one of the known rumours or not (e.g., I think Obama is not muslim would
be about the rumour, while Obama was talking to a group of Muslims wouldn’t). An
approach like this can be useful for long-standing rumours, where one wants to identify
relevant tweets to track the rumours that have already been identified; one may also refer
to this task as rumour tracking rather than rumour detection. Our goal here is instead to
detect new rumours.

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 7

2.1.2 Method

We use Conditional Random Fields (CRF) as a sequential classifier that enables aggre-
gation of tweets as a chain of reports. We use a Maximum Entropy classifier as the
non-sequential equivalent of CRF to test the validity of the hypothesis, and also use addi-
tional baseline classifiers for further comparison. Moreover, we also reproduce a baseline
based on the approach introduced by Zhao et al. (2015) to compare the performance of
our approach with that of a state-of-the-art approach.

Conditional Random Fields (CRF). We use CRF as a structured classifier to model
sequences of tweets as observed in the timelines of Twitter breaking news. With CRF,
we can model the timeline as a linear chain or graph that will be treated as a sequence of
rumours and non-rumours. In contrast to classifiers traditionally used for this task, which
choose a label for each input unit (e.g., a tweet), CRF also consider the neighbours of
each unit, learning the probabilities of transitions of label pairs to be followed by each
other. The input for CRF is a graph G = (V,E), where in our case each of the vertices
V is a tweet, and the edges E are relations of tweets, i.e., a link between a tweet and its
preceding tweet in the event. Hence, having a data sequence X as input, CRF outputs a
sequence of labels Y Lafferty et al. (2001), where the output of each element yi will not
only depend on its features, but also on the probabilities of other labels surrounding it.
The generalisable conditional distribution of CRF is shown in Equation 2.1 Sutton and
McCallum (2011)1.

p(y|x) =
1

Z(x)

A∏
a=1

Ψa(ya, xa) (2.1)

where Z(x) is the normalisation constant, and Ψa is the set of factors in the graph G.

Therefore, in our specific case of rumour detection, CRF will exploit the sequence of
rumours and non-rumours leading up to the current tweet to determine if it is a rumour
or not. It is important to note that with CRF the sequence of rumours and non-rumours
preceding the tweet being classified will be based on the predictions of the classifier itself,
and will not use any ground truth annotations. Errors in early tweets in the sequence may
then augment errors in subsequent tweets. For each tweet to be classified, we solely feed
the preceding tweets to the classifier to simulate a realistic scenario where subsequent
tweets are not yet posted and early decisions need to be made on each tweet.

Maximum Entropy classifier (MaxEnt). As the non-sequential equivalent of CRF,
we use a Maximum Entropy (or logistic regression) classifier, which is also a conditional
classifier but which will operate at the tweet level, ignoring the sequence and hence the
preceding tweets. This enables us to compare directly the extent to which treating the
tweets posted during an event as a sequence instead of having each tweet as a separate
unit can boost the performance of the classifier.

1We use the PyStruct to implement Conditional Random Fields Müller and Behnke (2014).

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 8

Enquiry-based approach by Zhao et al. (2015): As a state-of-the-art baseline for
rumour detection, and the only approach that so far has tackled rumour detection in social
media, we reproduce the approach by Zhao et al., which uses regular expressions to look
for enquiry posts. We use the set of replies responding to each tweet to look for enquiry
posts. Following the approach described by the authors, we consider that a tweet is a
rumour if at least one of the replying tweets matches with one of the regular expressions
that the authors curated. The list of regular expressions defined by the authors is shown
in Table 2.1.

Pattern Regular Expression Type

is (that | this | it) true Verification
wh[a]*t[?!][?1]* Verification
(real? | really ? | unconfirmed) Verification
(rumour | debunk) Correction
(that | this | it) is not true Correction

Table 2.1: List of regular expressions utilised by Zhao et al., which we reimplemented to reproduce their
approach as a baseline. Regular expressions for both enquires and corrections are combined, and a tweet
that matches any of them will be deemed an enquiry tweet.

Additional baselines. We also compare three more non-sequential classifiers2: Naive
Bayes (NB), Support Vector Machines (SVM), and Random Forests (RF).

We perform the experiments in a 5-fold cross-validation setting, having in each case
four of the events for training, and the remainder event for testing. This enables us to
simulate a realistic scenario where an event is completely unknown to the classifier and
it has to identify rumours from the knowledge garnered from events in the training set.
For evaluation purposes, we aggregate the output of all five runs as the micro-averaged
evaluation across runs.

We use two types of features with the classifiers: content-based features and social
features. We test them separately as well as combined. The features that fall in each of
these categories are as follows:

Content-based Features. We use seven different features extracted from the content
of the tweets:

• Word Vectors: to create vectors representing the words in each tweet, we build
word vector representations using Word2Vec Mikolov et al. (2013). We train a
different Word2Vec model with 300 dimensions for each of the five folds, training
the model in each case from the collection of tweets pertaining to the four events in
the training set, so that the event (and the vocabulary) in the test set is unknown. As
a result, we get five different Word2Vec models, each used in a separate fold.

2We use their implementation in the scikit-learn Python package for Maximum Entropy, Naive Bayes,
Support Vector Machines and Random Forests.

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 9

• Part-of-speech Tags: we build a vector of part-of-speech (POS) tags with each
feature in the vector representing the number of occurrences of a certain POS tag in
the tweet. We use Twitie Bontcheva et al. (2013) to parse the tweets for POS tags,
an information extraction package that is part of GATE Cunningham et al. (2011).

• Capital Ratio: the ratio of capital letters among all alphabetic characters in the
tweet. Use of capitalisation tends to represent emphasis, among others.

• Word Count: the number of words in the tweet, counted as the number of space-
separated tokens.

• Use of Question Mark: a binary feature representing if the tweet has at least a
question mark in it. Question marks may be indicative of uncertainty.

• Use of Exclamation Mark: a binary feature representing if the tweet has at least
an exclamation mark in it. Exclamation marks may be indicative of emphasis or
surprise.

• Use of Period: a binary feature representing if the tweet has at least a period in
it. Punctuation may be indicative of good writing and hence potentially of slow
reporting.

Social Features. We use five social features, all of which can be inferred from the
metadata associated with the author of the tweet, and which is embedded as part of a
tweet object retrieved from the Twitter API. We define a set of social features that are
indicative of a user’s experience and reputation:

• Tweet Count: we infer this feature from the number of tweets that a user has posted
on Twitter. As numbers can vary substantially across users, we normalise them by
rounding up the 10-base logarithm of the tweet count: dlog10(statusescount)e.

• Listed Count: this feature is computed by normalising the number of lists a user
belongs to, i.e., the number of times other users decided to add them to a list:
dlog10(listedcount)e.

• Follow Ratio: in this feature we look at the reputation of a user as reflected by
their number of followers. However, the number of followers might occasionally
be rigged, e.g., by users who simply follow many others to attract more followers.
To control for this effect, we define the follow ratio as the logarithmically scaled
ratio of followers over followees: blog10 (#followers/#following)e.

• Age: we compute the age of a user as the rounded number of years that the user has
spent on Twitter, i.e., from the day the account was set up to the day of the current
tweet.

• Verified: a binary feature representing if the user has been verified by Twitter or
not. Verified users are those whose identity Twitter has validated, and tend to be
reputable people.

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 10

2.1.3 Results

Table 2.2 shows the results for different classifiers using either or both of the content-
based and social features, as well as the results for the state-of-the-art classifier by Zhao
et al. (2015). Performance results of the classifiers using content-based features suggests
a remarkable improvement for CRF over the rest of the classifiers, implying that CRF
benefits from the use of the sequence of tweets preceding each tweet as context to enrich
the input to the classifier. This is especially true when we look at precision, where CRF
performs substantially better than the rest. Only the Naive Bayes classifier performs better
in terms of recall, however, it performs poorly in terms of precision. As a result, CRF
balances precision and recall in a clearly better way, outperforming all the other classifiers
in terms of the F1 score.

Results are not as clear when we look at those using social features. CRF still performs
best in terms of precision, but performance drops if we look at the recall. In fact, most of
the classifiers perform better than CRF in terms of recall, with SVM as the best performing
classifier. Combining both precision and recall in an F1 score shows that SVM is the
classifier that best exploits social features. However, performance results using social
features are significantly worse than those using content-based features, which suggests
that social features alone are not sufficient.

When both content-based features and social features are combined as an input to the
classifier, we see that the results resemble that of the use of content-based features alone.
CRF outperforms all the rest in terms of precision, while Naive Bayes is good only in
terms of recall. As a result, the aggregation of features also leads to CRF being the best
classifier in terms of F1 score. In fact, CRF leads to an improvement of 39.9% over the
second best classifier in terms of F1, Naive Bayes. If we compare the results of CRF with
the use of content-based features alone or combining both types of features, we notice that
the improvement comes especially for recall, which is balanced out with a slight drop of
precision. As a result, we get an F1 score that is slightly better when using both features
together. In fact, all F1 scores for combined features are superior to their counterparts
using content-based features alone, among which CRF performs best.

Comparison with respect to the enquiry-based baseline approach introduced by Zhao
et al. buttresses our conjecture that a manually curated list of regular expressions may
lead to low recall, which is as low as 0.065 in this case. This approach gets a relatively
good precision score, which beats all of our baselines, although it performs substantially
worse than CRF. However, 59% of false positives as can be inferred from the precision
of 0.41 indicates that the regular expressions also match non-rumours. One could also
opt to expand the list of regular expressions and/or adapt them to our specific scenario
and events; however, this may involve substantial manual work and would not guarantee
generalisable performance.

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 11

Content

Classifier P R F1

SVM 0.355 0.445 0.395
Random Forest 0.271 0.087 0.131
Naive Bayes 0.309 0.723 0.433
Maximum Entropy 0.329 0.425 0.371
CRF 0.683 0.545 0.606

Social

Classifier P R F1

SVM 0.337 0.524 0.410
Random Forest 0.343 0.433 0.382
Naive Bayes 0.294 0.010 0.020
Maximum Entropy 0.336 0.476 0.394
CRF 0.462 0.268 0.339

Content + Social

Classifier P R F1

SVM 0.337 0.483 0.397
Random Forest 0.275 0.099 0.145
Naive Bayes 0.310 0.723 0.434
Maximum Entropy 0.338 0.442 0.383
CRF 0.667 0.556 0.607

State-of-the-art Baseline

Classifier P R F1

Zhao et al. (2015) 0.410 0.065 0.113

Table 2.2: Results for rumour detection.

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 12

2.2 Rumour stance classification

Stance classification is well studied in online debates where the aim is to classify the user
entries by “for” and “against”. Studies in these respect define stance as an overall position
held by a person towards an object, idea or position Somasundaran and Wiebe (2009);
Walker et al. (2012). Unlike stance classification in online debates the aim of rumour
stance classification is to classify the user contributions by “supporting”, “questioning”,
“denying” and “commenting”.

In our earlier work described in Deliverable D6.2.1 Derczynski et al. (2016) we in-
vestigated techniques to classify rumours as “supporting”, “questioning” or “denying”. In
this section we expand our earlier work by considering the forth category namely “com-
menting”. We also enhance our feature set with additional features in order to boost the
classification accuracy. Furthermore, we introduce several classifiers such as Support
Vector Machines (SVM), J48 Tree, Bayes, Random Forest and Instance Based Learn-
ing to the task and show that they can lead to better classification accuracy compared to
Gaussian Process classification used in D6.2.1.

In the following we briefly review related work on rumour stance classification. In
Section 2.2.2 we outline our classification approach and present and discuss the classi-
fication experiments in Section 2.2.3. We packaged the developed approach as a GATE
plugin. Section 2.2.4 gives details about the plugin.

2.2.1 Related work

Mendoza et al. (2010b) manually looked at rumours with established veracity levels to
understand the stance of Twitter users take with respect to true and false rumours, i.e.
with rumours which were proven true or false. They looked at seven rumours which
were later proven true and seven rumours that were false. They manually labeled the
tweets with the stance categories “affirms” (supports), “denies” and “questions”. They
found out that over 95% of true tweets have been classified with the “affirms”, around
4% with “questions” and only 0.4% with the “denies” category. On the other hand 38%
of the false tweets were put under the “denies” category and 17% under the “questions”
category. Both of these figures show that false tweets are either denied or questioned by
others. However, nevertheless there are still 45% of tweets that were affirmed by other
tweets.

The study of Mendoza et al. (2010b) is manual and did not involve any development
of tools for automated classification. The first study that tackles the stance classification
automatically is reported by Qazvinian et al. (2011). In addition to stance classification
the authors also perform automatic detection of relevance of tweets to rumours. In both
tasks they use manually generated Twitter data set containing 10K tweets to guide a su-
pervised machine learning approach. The authors use different features categorized by
“content”, “network” and “Twitter specific memes”. The content category contains uni-

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 13

grams, bi-grams and their POS tags as features. In the network category the authors look
at the retweet (RT) as a feature. Finally, the Twitter specific memes entail hashtag and
URLs’ content features. As machine learning approach Bayesian Classifiers are used. In
the rumour detection tasks a mean average precision of 96.5% is reported. For this task
the authors also note that the best performing features are the content based ones. In the
rumour stance classification task, the tweets are classified as supporting, denying, ques-
tioning or neutral. In terms of results similar observations are reported. When all features
are used an accuracy of 93.5% and 94.4% precision and 90.6% recall are achieved. Again
the best performing features are those in the content category.

Similar to Qazvinian et al. (2011), Hamidian and Diab (2015a) perform rumour de-
tection and rumour type classification by applying supervised machine learning using
the same data set. However, instead of Bayesian classifiers the authors use J48 deci-
sion tree implemented within the Weka platform Hall et al. (2009). The features from
Qazvinian et al. (2011) are adopted and extended with time related information and hash-
tags. In addition to the feature categories introduced above Hamidian and Diab introduce
another feature category namely “pragmatic”. The pragmatic features include named en-
tity, event, sentiment and emoticons. The aim with the pragmatic features is to detect
the stance within the tweet. The evaluation of the performance is casted as either 1-step
problem containing a 6 class classification task (not rumour, 4 classes of stance and not
determined by the annotator) or 2-step problem containing first a 3 class classification
task (not rumour or rumour, not determined) and then 4 class classification task (stance
classification). Better performances are achieved using the 2-step approach leading to
82.9% F-1 measure compared to 74% with the 1-step approach. The authors also report
that the best performing features were the content based features and the worst performing
ones the network and Twitter specific features. In their recent paper, Hamidian and Diab
(2016) introduce the Tweet Latent Vector (TLV) approach that is obtained by applying
the Semantic Textual Similarity model proposed by Guo and Diab (2012). The authors
compare the TLV approach to their own earlier system as well as to original features of
Qazvinian et al. (2011) and show that the TLV approach outperforms both baselines.

Liu et al. (2015) follow the resulting investigations about stances in rumours made by
Mendoza et al. (2010b) and use stance as additional feature to those reported by related
work to tackle the veracity classification problem. On the stance classification the authors
adopt the approach of Qazvinian et al. (2011) and compare it with a rule-based method
briefly outlined by the authors. They claim that their rule-based approach performed better
than the one adopted from related work and thus use the rule-based stance classification as
additional component on the veracity problem (see Section 2.4.1). The experiments were
performed on the data set reported by Qazvinian et al. (2011). Unfortunately the authors
do not provide detailed analysis about the performance of the stance classification.

More recently, Zeng et al. (2016) enriches the feature sets investigated by earlier stud-
ies by features determined through the Linguistic Inquiry and Word Count (LIWC) dic-
tionaries Tausczik and Pennebaker (2010). They investigate supervised approach using
Logistic Regression, naı̈ve Bayes and Random Forest classification. The authors use their

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 14

own manually annotated data to classify them by stance. However, unlike previous stud-
ies Zeng et al. consider only two classes: affirm and deny. Best results are reported with
Random Forest leading to 87% precision, 96.9% recall, 91.7% F1-measure and 88.4%
accuracy.

2.2.2 Method

Our rumour stance classification is performed using Support Vector Machines (SVMs)
with the RBF kernel Buhmann (2003), the J48 Tree, Random Forest and naı̈ve Bayes
and Instance Based classifier. The SVM parameter settings we used in our experiments
are: -S 0 -K 2 -D 3 -G 0.1 -R 0.0 -N 0.5 -M 40.0 -C 1.5 -E 0.001 -P 0.1. We applied
Weka’s integrated grid search to learn to optimal values for Gamma (G) and regularization
parameter (C). The J48 Tree is run with -U (unpruned tree) flag set. For the Random
Forest we use 100 trees (-I 100). Finally we run the naı̈ve Bayes as well as the Instance
Based classifier with default Weka settings.

The classifiers rely on the following features extracted from each tweet:

• BOW: Bag of words have been used in D6.2.1 and we continue using them in the
current setting. In short for this feature we first create a dictionary from all tweets
in the corpus. Next each tweet is assigned the words in the dictionary as features.
For words occurring in the tweet the feature values are set to the number of times
they occur in the tweet. For all other words “0” is used.

• Brown Cluster: Similar to the BOW feature the brown clustering is further used
from our previous approach. Brown clusters are obtained from a bigger tweet cor-
pus that entails assignments of words to brown cluster ids. We used 1000 clusters,
i.e. there are 1000 cluster ids. All 1000 ids are used as features however, only ids
that cover words in the tweet are assigned a feature value “1”. All other cluster id
feature values are set to “0”.

• POS tag: The BOW feature captures the actual words and is domain dependent. To
create a feature that is not domain dependent we added Part of Speech (POS) tags as
additional feature. Similar to the BOW feature we created a dictionary of POS tags
from the entire corpus (excluding the medical data) and used this dictionary to label
each tweet with it – binary, i.e. whether a POS tag is present.3 However, instead of
using just single POS tag we created sequences containing bi-gram, tri-gram and 4-
gram POS tags. Feature values are the frequencies of POS tag sequences occurring
in the tweet.

3We also experimented with frequencies of POS tags, i.e. counting how many times a particular POS tag
occurs in the tweet. The counts then have been normalized using mean and standard deviation. However,
the frequency based POS feature negatively affected the classification accuracy so that we omitted it from
the feature set.

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 15

• Sentiment: This is another domain independent feature. Sentiment analysis reveals
the sentimental polarity of the tweet such as whether it is positive or negative. We
used the Stanford sentimentSocher et al. (2013) tool to create this feature. The tool
returns a range from 0 to 4 with 0 indicating “very negative” and 4 “very positive”.
First, we used this as a categorical feature but turning it to a numeric feature gave
us better performance. Thus each tweet is assigned a sentiment feature whose value
varies from 0 to 4.

• NE: Named entity (NE) is also domain independent. We check each tweet whether
it contains Person, Organization, Date, Location and Money tags and for each tag
in case of presence we add “1” otherwise “0”.

• Reply: This feature is a binary feature and assigns “1” if the tweet is a reply to a
previous one or not. The reply information is extracted from the tweet metadata.
Again this feature is domain independent.

• Emoticon: We created a dictionary of emoticons using Wikipedia4. In Wikipedia
those emoticons are grouped by categories. We use the categories as the feature. If
any emoticon from a category occurs in the tweet we assign for that category feature
the value “1” otherwise “0”. Again similar to the previous features this feature is
domain independent.

• URL: This is again domain independent. We assign the tweet “1” if it contains any
URL otherwise “0”.

• Mood: Mood detection analyses a textual content using different view points or
angles. We use the tool described by Celli et al. (2016) to perform the mood detec-
tion. This tools looks from 5 different angles to each tweet: amused, disappointed,
indignant, satisfied and worried. For each of this angles it returns a value from -1
to +1. We use the different angles as the mood features and the returned values as
the feature value.

• Originality score: Is the count of tweets the user has produced, i.e. the “statuses
count” in the Twitter API.

• isUserVerified(0-1): Whether the user is verified or not.

• NumberOfFollowers: Number of followers the user have.

• Role score: Is the ratio between the number of followers and followees (i.e. Num-
berOfFollowers/NumberOfFollowees).

• Engagement score: Is the number of tweets divided by the number of days the user
has been active (number of days since the user account creation till today).

4https://en.wikipedia.org/wiki/List of emoticons

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 16

• Favourites score: The “favourites count” divided by the number of days the user
has been active.

• HasGeoEnabled(0-1): Whether the user has enabled geo-location or not.

• HasDescription(0-1): Whether the user has description or not.

• LenghtOfDescription in words: The number of words in the user description.

• averageNegation: We determine using the Stanford parser Chen and Manning
(2014) the dependency parse tree of the tweet, count the number of negation re-
lation (“neg”) that appears between two terms and divide this by the number of
total relations.

• hasNegation(0-1): Whether the tweet has negation relationship or not.

• hasSlangOrCurseWord(0-1): A dictionary of key words5 are used to determine
the presence of slang or curse words in the tweet.

• hasGoogleBadWord(0-1): Same above but the dictionary of slang words is ob-
tained from Google.6

• hasAcronyms(0-1): The tweet is checked for presence of acronyms using a
acronym dictionary.7

• averageWordLength: Average length of words (sum of word character counts di-
vided by number of words in each tweet).

• surpriseScore: We collected a list of surprise words such as “amazed”, “surprised”,
etc. We use this list to compute a cumulative vector using word2Vec Mikolov et al.
(2013) – for each word in the list we obtain its word2Vec representation, add them
together and finally divide the resulting vector by the number of words to obtain the
cumulative vector. Similarly a cumulative vector is computed for the words in the
tweet – excluding acronyms, named entities and URLs. We use cosine to compute
the angle between those two cumulative vectors to determine the surprise score.
Our word embeddings comprise the vectors published by Baroni et al. Baroni et al.
(2014).

• doubtScore: Similar to the surpriseScore. The difference is that we use a list of
doubt words such as “doubt”, “uncertain”, etc.

• noDoubtScore: In this feature we proceed as in doubtScore but use instead words
which stand for certainty such as “surely”, “sure”, “certain”, etc.

• hasQuestionMark(0-1): Whether the tweet has “?” or not.
5www.noswearing.com/dictionary
6http://fffff.at/googles-official-list-of-bad-words
7www.netlingo.com/category/acronyms.php

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 17

Dataset Rumours Supporting Denying Questioning Commenting

Ottawa shooting 58 161 76 64 481
Ferguson riots 46 192 83 94 685
Germanwings crash 68 177 12 28 169
Charlie Hebdo 74 236 56 51 710
Sydney siege 71 89 4 99 713

Table 2.3: Counts of tweets with supporting, denying or questioning labels in each event collection from
the PHEME rumour data set.

• hasExclamationMark(0-1): Whether the tweet has “!” or not.

• hasDotDotDot(0-1): Whether the tweet is has “...” or not.

• numberOfQuestionMark: Number of time “?” occurs in the tweet.

• NumberOfExclamationMark: Number of times “!” occurs in the tweet.

• numberOfDotDotDot: Number of time “...” occurs in the tweet.

• Binary regular expressions applied on each tweet: .*(rumor?—debunk?).*, .*is
(that—this—it) true.*, etc. In total there are 10 features covering regular expres-
sions.

Each tweet feature described above is extracted along with its class label. These are
used by the classifiers either for learning purposes when they are run in training mode or
for prediction if they run in testing mode. The training and testing steps are outlined in
the next Section.

2.2.3 Experimental setup and results

In our experiments we continue working with the same data set as in D6.2.1. A short
summary of the dataset is given in Table 2.3. In summary the data consist of Tweets from
5 different events: Ottawa shooting, Ferguson riots, Germanwings crash, Charlie Hebdo
and finally Sydney siege. Each data set has a different number of rumours where each
rumour contains tweets marked with annotations such as “supporting”, “questioning”,
“denying” and “commenting”.

Following a similar strategy for training-testing to that we described in Lukasik et al.
(2015), we cast the rumour stance classification task into its specific categories as a super-
vised problem. In Lukasik et al. (2015) the idea was to follow two scenarios for training
and testing: (1) training and testing are performed on out-domain data and (2) introducing
small proportion of in-domain data in the training phase. In (1) the classifier is trained
on all rumours except the one that is used for testing. In (2) the training data is enriched
with first 10, 20, 30, 40 and 50 tweets from the rumour set that builds the testing data.
In this deliverable we perform (1) as described above however, make a slight change on

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 18

classifier in do-
main
tweets
(in %)

Ottawa
shooting

Ferguson
riots

Charlie
Hebdo

German
wings

Sydney
siege

macro
mean
(Acc)

SVM 0 64.72 65.89 66.52 64.46 61.36 64.59
Random
Forest

0 68.76 66.71 75.03 71.52 68.31 70.07

IBk 0 68.55 66.12 77.1 76.5 70.82 71.82
Bayes 0 71.81 70.42 76.7 73.38 73.42 73.14
J48 0 72.4 71.26 80.41 80.57 74.56 75.84

Table 2.4: Different classifier performances on setting (1). IBk is the Instance Based Learning classifier.
Results are for the stance classification.

in do-
main
tweets
(in %)

Ottawa
shooting

ferguson
riots

Charlie
Hebdo

Germanwings Sydney
siege

macro
mean
(Acc)

0 72.4 71.26 80.41 80.57 74.56 75.84
10 73.53 72.16 80.14 79.25 73.25 75.66
20 74.6 73.29 80.47 80.29 74.57 76.64
30 76.65 72.99 79.96 80.37 74.35 76.86
40 76.31 73.61 80.63 81.24 75.69 77.5
50 80.95 74.67 81.5 81.03 76.36 78.9
60 81.95 78.36 82.04 81.53 76.64 80.1

Table 2.5: Classification results in accuracy obtained using the J48 Tree. Results are for the stance classi-
fication.

the (2) set-up. Instead of specific counts we use percentage, i.e. 10% 20%, etc. We think
percentage is a better option because some rumours might have smaller number of tweets
than what would be required to transfer from the testing data to the training one. We use
setting (1) to determine the best performing classifier. The results are shown in Table 2.4.

From the results in Table 2.4 we can see that the least performing classifier is the
SVM one and the best the J48. We think SVM does not perform well because our training
data is imbalanced in terms of class instances. As shown in Table 2.3 there are far more
commenting instances than the other 3 classes. The J48 Tree is not very much affected by
this as it can handle imbalanced data. In the following we use J48 to report detailed results
in both evaluation settings (1) and (2). The results for the best performing classifier – J48
Tree – are shown in Table 2.5.

The results shown in Table 2.5 are obtained with the combination of features described
above and using J48 Tree as the classifier. The results are reported in classification accu-
racy and are macro averaged over the different events. The row with 0% represents the
set-up scenario (1) discussed above. From the results we can see, as noted in our earlier
studies Lukasik et al. (2015) and report (D6-2-1), inclusion of in-domain data in the train-

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 19

Method in domain
tweets

Ottawa
shooting

ferguson
riots

Charlie
Hebdo

German
w.

Sydney
siege

macro
mean
(Acc)

GPICM 10 62.95 59.56 76.79 74.14 65.37 67.76
GPICM 20 63.75 55.49 76.45 74.14 61.77 66.32
GPICM 30 62.95 57.68 76.79 74.14 62.6 66.83
GPICM 40 68.92 59.87 78.5 70.69 63.16 68.23
GPICM 50 69.72 58.31 77.13 74.14 63.99 68.66

Table 2.6: Accuracy for each of the PHEME datasets using Gaussian Process as the stance classification
method. Note that the count of in-domain tweets are raw numbers, not percentages.

in do-
main
tweets
(in %)

Ottawa
shooting

Ferguson
riots

Charlie
Hebdo

Germanwings Sydney
siege

macro
mean
(F1)

0 69.38 67.95 79.11 77.81 72.63 73.37
10 68.1 66.98 77.72 74.42 69.87 71.42
20 69.55 67.79 78.27 76.94 70.8 72.67
30 72.06 67.84 77.44 78.28 70.61 73.25
40 71.77 68.66 77.88 78.08 72.34 73.74
50 77.97 70.93 78.28 77.4 73.63 75.64
60 79.17 73.32 78.43 79.73 73.66 76.86

Table 2.7: J48 Tree stance classification results in weighted F1 over the 4 classes.

ing improves the results significantly. Furthermore, we can see the more in-domain data
is included the better is the overall performance (except from 0% to 10%). We also would
like to highlight that overall the results obtained through these features as well as the ap-
plication of J48 lead to better performance than compared to our previous setting reported
in D6-2-1. In Table 2.20 of D6-2-1 we reported 68.66% accuracy with 50 tweets included
from the testing set to the training pool and using Gaussian process as the classifier. The
full results of our previous experiments are shown in Table 2.6. In some cases accuracy
can be biased if there is an unbalanced number of class instances. Because of this reason
we also computed F1 – the harmonic mean between precision and recall. The results for
this are shown in Table 2.7.

2.2.4 GATE plugin

We packaged the best performing classifier into GATE in the form of a GATE-plugin. The
plugin requires some pre-processing such as loading a tweet to GATE, tokenisation, POS-
tagging, named entity recognition, sentiment detection, etc. It also requires the GATE
learning framework to perform the classification. We have created an application pipeline
with all the required steps and resources that can be loaded into GATE.

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 20

[depth=0] u1: These are not timid colours; soldiers back guarding Tomb of Unknown
Soldier after today’s shooting #StandforCanada –PICTURE– [support]

[depth=1] u2: @u1 Apparently a hoax. Best to take Tweet down. [deny]
[depth=1] u3: @u1 This photo was taken this morning, before the shooting.
[deny]
[depth=1] u4: @u1 I don’t believe there are soldiers guarding this area right
now. [deny]

[depth=2] u5: @u4 wondered as well. I’ve reached out to someone who
would know just to confirm that. Hopefully get response soon. [comment]

[depth=3] u4: @u5 ok, thanks. [comment]

Figure 2.1: Example of a tree-structured thread discussing the veracity of a rumour, where the label associ-
ated with each tweet is the target of the rumour stance classification task.

2.3 Conversational rumour stance classification

The previous section tackles the rumour stance classification task by looking at individual
tweets. As a complementary objective, we also looked at the ability to classify tweets that
are part of a conversation. In a conversation initiated by a rumour, where users respond
to one another discussing the veracity of the rumour, one can also leveraged the conver-
sational structure to make the most of the context garnered from the discursive nature
of tweets. In this section we present experimentation that makes use of conversational
structure, comparing its performance with respect to classifiers that ignore the structure.

2.3.1 Problem definition

Within this task we propose leveraging conversation structure as one of the main features
that characterise social media Tolmie et al. (2015). So the task becomes one of classifying
each tweet in a conversational thread, in the context of the thread. Twitter conversations
consist of replies to each other, together forming a tree structure, as shown in the example
in Figure 2.1. Replies can be nested in each other, so that the depth of the tree can
vary. Hence, in the stance classification task applied to Twitter conversations we have
rumours containing a variably sized set of conversations Ri = {C1, ..., C|Ri|}. Each of
these conversations, Cj , has a varying number of tweets in it. By definition, a conversation
has a source tweet (the root of the tree), tj,1, that initiates it. The source tweet tj,1 can
receive replies by a varying number k of tweets Repliestj,1 = {tj,1,1, ..., tj,1,k}, each of
which can in turn receive replies by a varying number k of tweets, e.g., Repliestj,1,1 =
{tj,1,1,1, ..., tj,1,1,k}. Thus, we encode the tweet index as a sequence of ids of consecutive
children of a preceding node, while traversing the conversation structure.

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 21

2.3.2 Experiment Design

In this section we describe the classifiers, features and evaluation measures we used in
our experiments.

Classifiers

Conditional Random Fields (CRF). We use CRF as a structured classifier to model
sequences observed in Twitter conversations. With CRF, we can model the conversation
as a graph that will be treated as a sequence of stances, which also enables us to assess
the utility of harnessing the conversational structure for stance classification. In contrast
to traditionally used classifiers for this task, which choose a label for each input unit
(e.g. a tweet), CRF also consider the neighbours of each unit, learning the probabilities
of transitions of label pairs to be followed by each other. The input for CRF is a graph
G = (V,E), where in our case each of the vertices V is a tweet, and the edges E are
relations of tweets replying to each other. Hence, having a data sequence X as input,
CRF outputs a sequence of labels Y Lafferty et al. (2001), where the output of each
element yi will not only depend on its features, but also on the probabilities of other labels
surrounding it. The generalisable conditional distribution of CRF is shown in Equation
2.2 Sutton and McCallum (2011).

p(y|x) =
1

Z(x)

A∏
a=1

Ψa(ya, xa) (2.2)

where Z(x) is the normalisation constant, and Ψa is the set of factors in the graph G.

We use CRFs in two different settings.8 First, we use a linear-chain CRFs (Linear
CRF) to model each branch as a sequence to be input to the classifier. We also use Tree-
Structured CRFs (Tree CRF) or General CRFs to model the whole, tree-structured con-
versation as the sequence input to the classifier. So in the first case the sequence unit is
a branch and our input is a collection of branches and in the second case our sequence
unit is an entire conversation, and our input is a collection of trees. With this distinction
we also want to experiment whether it is worthwhile building the whole tree as a more
complex graph, given that users replying in one branch might not have necessarily seen
and be conditioned by tweets in other branches. However, we believe that the tendency of
types of replies observed in a branch might also be indicative of the distribution of types
of replies in other branches, and hence useful to boost the performance of the classifier
when using the tree as a whole. An important caveat of modelling a tree in branches is
also that there is a need to repeat parts of the tree across branches, e.g., the source tweet
will repeatedly occur as the first tweet in every branch extracted from a tree.9

8We use the PyStruct to implement both variants of CRF Müller and Behnke (2014).
9Despite this also leading to having tweets repeated across branches in the test set and hence producing

an output repeatedly for the same tweet with Linear CRF, this output is consistent and there is no need to

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 22

Maximum Entropy classifier (MaxEnt). As the non-sequential equivalent of CRF,
we use a Maximum Entropy (or logistic regression) classifier, which is also a conditional
classifier but which operate at the tweet level, ignoring the conversational strucsture. This
enables us to compare directly the extent to which treating conversations as sequences
instead of having each tweet as a separate unit can boost the performance of the classifier.

Additional baselines. We also compare four more non-sequential classifiers10: Naive
Bayes (NB), Support Vector Machines (SVM), Random Forests (RF), and Majority (i.e.,
a dummy classifier always labelling the most frequent class).

We experiment in an 8-fold cross-validation setting. Seven events are used for training
and the remainder event is used for testing. With this, we simulate a realistic scenario
where we need to use knowledge from past events to train a model that will be used to
classify tweets in new events. For evaluation purposes, we aggregate the output of all
eight runs as the micro-averaged evaluation across runs.

Features

We use four types of features to represent the tweets. Note that all of them are local
features extracted from the tweet itself and independent of the rest of the conversation,
hence enabling us to focus our comparison on how using the sequential structure can
impact on the results.

Feature type #1: Lexicon.

• Word Embeddings: a vector with 300 dimensions averaging vector representations
of the words in the tweet using Word2Vec Mikolov et al. (2013). The Word2Vec
model for each of the eight folds is trained from the collection of tweets pertaining
to the seven events in the training set, so that the event (and the vocabulary) in the
test set is unknown.
• Part of speech (POS) tags: a vector where each feature represents the number of

occurrences of a type of POS tag in the tweet. The vector is then composed of
the numbers of occurrences of different POS tags in the tweet, parsed using Twitie
Bontcheva et al. (2013).
• Use of negation: binary feature determining if a tweet has a negation word or

not. We use a list of negation words, including: not, no, nobody, nothing, none,
never, neither, nor, nowhere, hardly, scarcely, barely, don’t, isn’t, wasn’t, shouldn’t,
wouldn’t, couldn’t, doesn’t.
• Use of swear words: binary feature determining if ‘bad’ words are present in a

tweet. We use a list of 458 bad words11.

Feature type #2: Content formatting.

aggregate different outputs.
10We use their implementation in the scikit-learn Python package
11http://urbanoalvarez.es/blog/2008/04/04/bad-words-list/

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 23

• Tweet length: the length of the tweet in number of characters.
• Capital ratio: the ratio of capital letters among all alphabetic characters in the

tweet.
• Word count: the number of words in the tweet, counted as the number of space-

separated tokens.

Feature type #3: Punctuation.

• Use of question mark: binary feature for the presence or not of question marks in
the tweet.
• Use of exclamation mark: binary feature for the presence or not of exclamation

marks in the tweet.
• Use of period: binary feature for the presence or not of periods in the tweet.

Feature type #4: Tweet formatting.

• Attachment of URL: binary feature, capturing the use or not of URLs in the tweet.
• Attachment of picture: binary feature that determines if the tweet has a picture

attached.
• Is source tweet: binary feature determining if the tweet is a source tweet or is instead

replying to someone else. Note that this feature can also be extracted from the tweet
itself, checking if the tweet content begins with a Twitter user handle or not; there
is no need to make use of the conversational structure to extract this feature.

2.3.3 Results

Table 2.8 shows the results comparing performance of the different classifiers, both in
terms of micro- and macro-F1 scores, and F1 scores by class. Due to the fact that the
dataset is clearly imbalanced with a skew towards commenting tweets, we observe that
even the majority classifier performs very well in terms of micro-averaged F1 score. In
fact, the majority classifier is only slightly outperformed by other classifiers if we look at
this evaluation measure. This is why we argue for an evaluation based on macro-averaged
F1 score, which accounts for the ability of classifiers to produce an output that better fits
to the distribution of classes. Interestingly, we observe that the conditional classifiers (i.e.,
MaxEnt, Linear CRF and Tree CRF) perform substantially better than the rest in terms
of macro-averaged F1 score, which are the only ones to achieve a score of at least 0.4.
Comparison of macro-averaged F1 scores of these three classifiers shows that the Tree
CRF slightly outperforms the Linear CRF, while both perform significantly better than
the non-sequential Maximum Entropy classifier. These results therefore do suggest that
exploiting the sequential structure of conversations can lead to improvements on stance
classification in rumourous Twitter conversations using the same set of local features.

When we look at the performance by class, we can observe that classifiers performing
well only in terms of micro-averaged F1 have the tendency to perform well for the major-
ity class (comments). Interestingly, CRF classifiers using conversational structure show
remarkable improvements for other classes, especially supporting and querying tweets,

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 24

where Tree CRF performs the best. However, all classifiers struggle to classify denials,
with performance scores comparable to the other categories. We believe that one of the
main reasons for this is that denials are one of the minority classes in the dataset. While
querying tweets are also rare, some of the features like question marks are highly indica-
tive of a tweet being a query, and hence they are easier to classify. Denials may in turn
have significant commonalities with comments, given that the latter may also use negating
words which may seem like denials. As shown in the confusion matrix for the Tree CRF
in Table 2.9, the majority class commenting is being chosen in as many as 75.8% of the
cases by the classifier for those tweets that are actually denials. Collection of additional
denying tweets may be of help to improve performance in this class.

Classifier Micro-F1 Macro-F1 S D Q C

Majority 0.643 0.196 0.000 0.000 0.000 0.783
SVM 0.676 0.292 0.372 0.000 0.000 0.796
Random Forest 0.666 0.357 0.360 0.022 0.260 0.787

Naive Bayes 0.175 0.203 0.435 0.147 0.169 0.060
MaxEnt 0.666 0.400 0.352 0.062 0.396 0.789
Linear CRF 0.646 0.433 0.454 0.105 0.405 0.767
Tree CRF 0.655 0.440 0.462 0.088 0.435 0.773

Table 2.8: Micro- and Macro-F1 performance results, and F1 scores by class (S: supporting, D: denying, Q:
querying, C: commenting)

S D Q C

S 366 (40.4%) 32 (3.5%) 22 (2.4%) 487 (53.7%)
D 38 (11.1%) 22 (6.4%) 23 (6.7%) 260 (75.8%)
Q 11 (3.1%) 10 (2.8%) 149 (41.6%) 188 (52.5%)
C 261 (9.0%) 91 (3.1%) 133 (4.6%) 2,421 (83.3%)

Table 2.9: Confusion matrix for Tree CRF (S: supporting, D: denying, Q: querying, C: commenting).

For comparison with the state-of-the-art stance classification approach by Lukasik
et al. (2016), we present results broken down by event in Table 2.10, both for their ap-
proach based on Hawkes Processes as well as our Tree CRF approach. Note that Lukasik
et al. (2016) only tested their approach on four of the events, and therefore performance
scores for the rest of the events are not shown. As can be observed from the four events
for which we have comparable results, the Hawkes Process performs better in terms of
micro-F1, and therefore accurately classifying more instances. However, the Tree CRF
performs substantially better in terms of macro-F1, which shows Tree CRF’s ability to
better estimate the distribution of labels in what is a highly imbalanced task and hence
favouring the use of conversational structure in the classification process. We deem this
a strong factor in this case as even a simple majority classifier achieves high micro-F1

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 25

scores, and the challenge lies in boosting macro-F1 scores to better balance the classifi-
cation.

Tree CRF HP Lukasik et al. (2016)

Event Micro-F1 Macro-F1 Micro-F1 Macro-F1

ottawashooting 0.629 0.457 0.678 0.323
ferguson 0.559 0.390 0.684 0.260
charliehebdo 0.686 0.427 0.729 0.326
sydneysiege 0.677 0.495 0.686 0.325
germanwings-crash 0.694 0.523 – –
putinmissing 0.660 0.446 – –
prince-toronto 0.670 0.518 – –
ebola-essien 0.629 0.384 – –

Table 2.10: Micro- and Macro-F1 performance results broken down by event, along with a comparison with
the results obtained by Lukasik et al. (2016)’s state-of-the-art approach based on Hawkes Processes, where
available.

To better understand the effect of exploiting sequential structure, we break down per-
formance scores by the depth of tweets. By this we want to see if the sequential classifiers
are consistently performing well across tweets of different depth within conversations.
Figure 2.2 shows these results for tweets from depth 0 (source tweet) to depth 9. Fur-
ther depths are omitted due to the small number of instances available. When we look
at micro-averaged scores, we do not see a big performance difference across classifiers,
except for the CRF classifiers performing better for source tweets; this is due to the fact
that most of the source tweets tend to support a rumour, and hence sequential classifiers
can learn this.

What is more interesting is to look again at the macro-averaged scores, where we see
that the sequential approaches, especially the Tree CRF, consistently performs well for
different levels of depth. More specifically, Tree CRF performs best in 7 out of 10 levels
of depth analysed, with Linear CRF being better once (depth = 2) and Maximum Entropy
being better twice (depth = 4 and 5).

2.4 Veracity classification

Veracity classification aims to verify whether the posts or tweets spread in social media
are true or false. Similar to the stance classification section, we first briefly review related
work on veracity classification. In Section 2.4.2 we again outline our classification ap-
proach by describing our features and classification methods. Next we present and discuss
the classification experiments. As performed for the stance classifier we also packaged the
developed approach as a GATE plugin. Details about the plugin are provided in Section
2.4.4.

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 26

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Micro−F1 by depth

Depth

●

●

●
●

●
●

●

●

●

●

●

Majority
SVM
Random Forest
Naive Bayes
Maximum Entropy
Linear CRF
Tree CRF

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Macro−F1 by depth

Depth

●

●

●

●

●
●

●

●
●

●

Figure 2.2: Micro- and macro-F1 scores by depth of tweet.

2.4.1 Related work

Castillo et al. (2011) distinguish microblogs that are “NEWS” and “CHAT” where the for-
mer reports an event or fact that can be of interest of others and the latter is a message that
is purely based on personal/subjective opinions and/or conversations among friends. The
microblogs in the NEWS are investigated for rumour credibility. Decision trees based on
J48 are used to train classifiers to classify microblogs into NEWS and CHAT categories
and then classify the microblogs in the NEWS category by whether they are credible or
not – the authors report that they used various other machine learning approaches such
as Bayes networks and SVM but mention that decision trees based on J48 were superior
to them. In both cases microblogs collected from Twitter are used and manually anno-
tated through Mechanical Turk. The authors use four categories of features: message-
based, user-based, topic-based, propagation-based features. The message-based features
consider characteristics of messages such as the length of a message, whether the mes-
sage contains exclamation/question mark, number of positive/negative sentiment words,
whether the message contains a hashtag and whether it is a re-tweet. The user-based
features entail information about the user such as registration age, number of followers,
number of followees and the number of tweets the user has authored in the past. Topic-
based features aggregate information from the previous two feature types such as the
fraction of tweets that contain URLs, the fraction of tweets with hashtags, etc. Finally,
the propagation-based features consider characteristics related to the messaging tree such
as depth of the retweet tree or the number of initial tweets of a topic. In the NEWS/CHAT
classification task the authors report performances scores of 89.2% in terms of accuracy,
89.1% in precision, 89.1% in recall and 89.1% in F1-measure. In the credibility classifi-
cation an accuracy of 86% is reported (the same figure is reported for precision/recall and
F-1 score).

Kwon et al. (2013) investigate also the rumour veracity classification problem follow-
ing a supervised approach. The authors propose their own dataset and make it publicly
available. They also propose features which fall into the following categories: temporal,

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 27

structural and linguistic. The temporal features aim to capture how rumours spread over
time. The structural features model the connectivity between the users who posted about
the rumour. Finally, the linguistic features are obtained through the Linguistic Inquiry
and Word Count (LIWC) dictionaries Tausczik and Pennebaker (2010). As baseline fea-
tures proposed by Castillo et al. (2011) are adopted. Using Random Forest and Logistic
Regression the authors perform feature selection on the proposed categories of features to
find the significant features. Using these significant features and three different classifiers
(Decision tree, Random Forest and SVM) they perform the rumour veracity classifica-
tion. The results show that features found as significant by Random Forest, and Random
Forest as the classifier lead to best performance in terms of accuracy (90%), precision
(93.5%), recall (89.2%) and F1-measure (89.3%). The best results using the baseline
features adopted from Castillo et al. (2011) are obtained through SVM with 81.1% accu-
racy, 89.1% precision, 75.3% recall and 78.8% F1-measure. The authors also show that
the combination of significant features identified by Random Forest and baseline features
lead to quality degradation.

Slightly later, Yang et al. (2012) tackle also the veracity classification of microblogs
but use instead of Twitter the messaging platform Sina Weibo – so to say a Chinese ver-
sion of Twitter. The authors adopt features from earlier studies and extend them by two
features: client-based and location-based features. The client-based features entail infor-
mation about the software that was used to perform the messaging. The location-based
features hold information on whether the message was sent within the same country where
the event happened or not. The authors report that adding these two features on top of ear-
lier reported features leads to a substantial boost on the accuracy figures of veracity clas-
sification. For instance, adding the two features on top of the propagation-based features
reported by Castillo et al. (2011) leads to an increase of 6.3% accuracy. Unfortunately, the
authors do not combine all the features and report results on them. For the classification
purpose the authors use SVM with the RBF kernel Buhmann (2003).

More, recently, Liu et al. (2015) use approaches reported by Yang et al. (2012) and
Castillo et al. (2011) as baseline systems and compare them against their proposed ap-
proach that make use of so called “verification features”. These features are determined
based on insights from journalists and include source credibility, source identity, source
diversity, source and location witness, event propagation and belief identification. In be-
lief identification results of rumour stance classification are used as features. The authors
show that the proposed approach outperforms the two baselines. They also show that
when adding the belief identification to the other features the results are significantly bet-
ter than when not adding them to the feature set. The best results range from 78% to
89% in terms of accuracy depending on how many tweets are used to verify the rumour (5
tweets to 400 tweets). The experiments are performed on their own data set using SVM as
a classifier. However, the authors mention that they also investigated Random Forest and
decision trees but SVM gave the best results. Unfortunately the paper does not provide
much detail about this comparison.

In the same year, Ma et al. (2015) proposed to model the features over time to per-

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 28

form message veracity classification. The authors adopt features from earlier studies (as
described above) as well as machine learning approaches used in those studies (J48, SVM
with the RBF kernel). Experiments are performed on Twitter as well as on Sina Weibo
datasets. Ma et al. use SVM with linear kernel and report that this linear SVM combined
with the proposed approach that models the features over time leads to best performance.
On the Twitter dataset reported by Castillo et al. (2011) the authors report an accuracy of
89%. For Sina Weibo, the authors collect their own dataset and run existing approaches
on them. The proposed setting reaches an accuracy of 84.6% where decision trees with
J48 leads to 77.4%, SVM with the RBF kernel to 77.9% and random forests to 81.5%.

Another study that tackles rumour veracity classification on Sina Weibo is reported
by Wu et al. (2015). The authors use message propagation trees to extract features
from tweets. Three categories of features are considered: message-based, user-based and
repost-based. Two systems reported by earlier studies Castillo et al. (2011) and Yang et al.
(2012) are adopted for the evaluation. As the machine learning approach, the authors use
SVM with a hybrid kernel technique consisting of random walk kernel Borgwardt et al.
(2005) and RBF kernel. The results reported are in favour of the proposed hybrid ap-
proach leading to 91% accuracy. The baselines achieve 85.4% Castillo et al. (2011) and
77.2% Yang et al. (2012). In the experiments the authors use rumours with at least 100 re-
posts. This opens the question about how well the proposed approach will perform when
it is applied to newly born rumours where there are only few messages available.

Vosoughi (2015) tackles the veracity classification problem using three categories of
features (linguistic, user oriented and temporal propagation related features) and speech
recognition inspired machine learning approaches such as Dynamic Time Wrapping
(DTW) and Hidden Markov Models (HMMs). Evaluations are performed on Twitter
data gathered by the author. Results show that HMMs with 75% accuracy are superior to
DTWs that lead to only 71% accuracy. The authors also report that the best performing
features are those in the temporal propagation category leading to 70% accuracy. The
linguistic features lead to 64% and the user oriented features to 65% accuracy. It is also
important to note that the authors, similar to Wu et al. (2015), work with rumours that
exceed a popularity threshold, in this case 1000 tweets.

More recently, Chua and Banerjee (2016) published an analysis of various features
on the tweet veracity classification task. The authors analysed six categories of fea-
tures: comprehensibility, sentiment, time-orientation, quantitative details, writing style
and topic. Rumours gathered by the authors are used along with the binomial logistic
regression to tackle the task in a supervised fashion. Unlike previous studies, Chua et al.
report only features that are significantly important rather than an indication of the overall
performance of the classifier. These features are: negation words (comprehensibility cat-
egory), past, present, future POS in the tweets (time-orientation category), discrepancy,
sweat and exclusion features (writing style category) and finally home, leisure, religion
and sex topic features (topic category).

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 29

classifier in do-
main
tweets
(in %)

Ottawa
shooting

ferguson
riots

Charlie
Hebdo

German
wings

Sydney
siege

macro
mean
(Acc)

SVM 0 64.52 94.12 50.46 83.33 66.0 71.69
Random
Forest

0 75.85 94.12 76.44 84.34 69.52 80.05

Bayes 0 81.33 94.21 74.73 84.59 79.85 82.94
J48 0 79.65 94.46 80.56 87.44 82.24 84.87
IBk 0 89.12 94.29 85.36 95.9 82.0 89.33

Table 2.11: Different classifier performances on veracity classification using the setting (1). Setting (1)
does not contain any testing data in the training process.

2.4.2 Method

As for the development of the stance classification component, we use the same classifiers
with the same parameter settings. For more details see Section 2.2.2. We also make use of
all the features discussed in Section 2.2.2. In addition to those features we use the output
of the stance classifier as feature:

• Stance class: We use the stance classifier described in Section 2.2 to predict the
stance for each tweet. This predicted output is used for the veracity classification
as additional feature along the features described in Section 2.2.2.

2.4.3 Experimental setup and results

For the veracity classification task, we use the same dataset as well as the same settings
for training and testing described in Section 2.2.3. Similar to the stance classification, we
perform the veracity classification at the tweet level. This means each tweet is either clas-
sified as “1” (the rumour discussed in the tweet is classified as true) or “0” (the rumour
discussed in the tweet is classified as false). As in stance classification we first analyse
the different machine learning approaches on the veracity classification task. Results of
this analysis are shown in Table 2.11. From the results we can see that the best perform-
ing approach is the instance based learning (IBk) method. Its performance is above 89%
accuracy on the setting 1 where no testing data is used in the training. The least perform-
ing approach is the SVM classifier leading to only 71% accuracy. Because of its great
performance we will be using only the IBk classifier for the veracity classification task.

Using the IBk classifier we perform the veracity classification using all the features
described in Section 2.2.2 excluding the stance feature (veracity classification without
stance as well as after adding the stance feature on top of those features (veracity classi-
fication with stance). Both results are shown in Tables 2.12 and 2.13. From the results
we can see that both settings (with and without stance feature) achieve accuracy values
around 90%. Furthermore, we also see that the accuracy values increase constantly the

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 30

in do-
main
tweets
(in %)

Ottawa
shooting

ferguson
riots

Charlie
Hebdo

Germanwings Sydney
siege

macro
mean
(Acc)

0 64.52 94.12 50.0 83.33 66.0 71.59
0 89.12 94.29 85.36 95.9 82.0 89.33
10 89.25 94.45 85.89 98.02 82.93 90.11
20 90.13 94.49 87.45 98.23 83.6 90.78
30 89.88 94.55 89.55 98.46 84.42 91.37
40 91.19 94.96 90.1 98.19 85.12 91.91
50 91.89 94.65 91.14 98.68 85.67 92.41
60 91.89 94.44 91.79 99.4 85.91 92.69

Table 2.12: Veracity classification results in accuracy obtained using the instance based learning method
(IBk). Results are obtained without the stance feature. The first line entails the majority voting results.

in do-
main
tweets
(in %)

Ottawa
shooting

ferguson
riots

Charlie
Hebdo

Germanwings Sydney
siege

macro
mean
(Acc)

0 92.71 94.29 86.0 96.99 83.03 90.6
10 93.03 94.45 87.57 98.38 84.14 91.51
20 92.99 94.49 88.48 98.65 84.42 91.81
30 93.16 94.55 90.69 98.46 85.09 92.39
40 93.45 94.96 91.74 98.19 85.61 92.79
50 94.61 94.65 91.98 98.68 86.17 93.22
60 94.89 94.44 92.48 99.4 86.24 93.49

Table 2.13: Veracity classification results in accuracy obtained using the instance based learning method
(IBk). Results are obtained with the stance feature.

more testing instances are added to the training data. Finally, the results show that the use
of stance as additional feature helps improve the performance of the veracity classifica-
tion.

As discussed in Section 2.2.3, accuracy may be affected by imbalance data and thus
may be biased towards the dominant class. Thus we also report the F1 measure (see
Table 2.14)12. Finally, we also report the confusion matrix in Table 2.15 to analyse the
classifier’s confusion in classification.

2.4.4 GATE plugin

As with the stance classification component, we packaged the veracity classifier as a
GATE-plugin. Pre-processing steps as in stance classification are applied to process the

12These results are obtained with the stance as addition feature.

CHAPTER 2. DETECTION OF MIS- AND DIS-INFORMATION 31

in do-
main
tweets
(in %)

Ottawa
shooting

ferguson
riots

Charlie
Hebdo

Germanwings Sydney
siege

macro
mean
(F1)

0 95.78 94.44 91.87 98.42 88.62 93.83
10 95.94 94.74 92.77 99.16 89.5 94.42
20 95.87 94.82 93.38 99.31 89.76 94.63
30 96.02 94.92 94.77 99.21 90.15 95.01
40 96.21 95.42 95.38 99.07 90.55 95.33
50 96.8 95.02 95.53 99.31 90.85 95.5
60 96.94 94.71 95.78 99.69 90.77 95.58

Table 2.14: IBk classification results in weighted F1 over the 2 classes.

false true
false 155.6 17.6
true 5.6 133.8

Table 2.15: Confusion matrix for the IBk classifier after adding 60% testing instances into the training data.
The figures are averaged over the 5 data sets

tweets. In addition, the stance classifier plugin described in Section 2.2.4 is added as addi-
tional pre-processing step as the output of the stance classification is used as feature in the
veracity classification. Apart from these pre-processing resources, similar to the stance
classifier plugin, the GATE learning framework is required to perform the prediction. The
entire process is saved as a pipeline and can be loaded into GATE.

Chapter 3

Discussion

We have evaluated the development of an automatic processing pipeline that detects mis-
information and disinformation that start off as rumours in the context of breaking news.
Such a pipeline has been developed, as consisting of three different stages and corre-
sponding components: (1) rumour detection, which identifies reports that are unverified
at the time of posting; (2) stance classification, which determines how different posts dis-
cussing a rumour support, deny, query or comment on it; and (3) veracity classification,
which determines if the information underlying a rumour is truthful or not. The combi-
nation of all three components in a single pipeline can ultimately identify misinformation
and disinformation having a timeline of tweets associated with an event as input.

The rumour detection task has proven challenging, as only a fourth of the reports we
observe constitute rumours. Despite this being a low percentage, we have also found that
it is crucial to promptly identify them as they tend to be widely spread. The brevity of
a tweet posits a challenge for rumour detection, where tweets do not necessarily provide
evidence of being a rumour, such as the use of hedging words such as ’reportedly’. Given
that the content of a tweet may not be indicative of being a rumour, we have explored the
use of a sequential classifier that leverages the context learnt throughout the event, so that
the classifier can analyse how the tweets fits in the story. Through comparison with other
baseline, non-sequential classifiers, we have found that the sequence is indeed of great
help to identify rumours, leading to over 40% improvement in performance.

The subsequent task on stance classification has been explored in two different set-
tings. The first is by classifying the stance of tweets in isolation, where one looks at the
tweet’s content. This is handy for its application in a streaming scenario, where tweets
pour in and it is not straightforward to put together related context. To complement this,
the second setting has been developed by exploiting the conversational structure produced
from people responding to rumourous tweets. Where tweets respond to one another, it is
easier to identify relationships and therefore build context. The exploitation of the con-
versational structure for stance classification has been performed by using a sequential
classifier. Interestingly, we have found that exploiting the conversational structure a clas-
sifier can boost performance as it has more context. The caveat of the latter approach is

32

CHAPTER 3. DISCUSSION 33

that its application to a streaming scenario is very challenging, given that conversations
are not retrieved in the same stream of tweets, and Twitter does not provide a suitable
API endpoint that enables to retrieve this data easily. We believe that a hybrid approach
that mostly relies in isolate tweets, but makes use of the conversational structure of tweets
where this is available, can lead to a competitive and scalable performance.

The final task, namely the veracity classification task, has been tackled at the tweet
level, classifying the rumour underlying each tweet as true or false. Using features in-
ferred from the content of the tweet, we show that accuracy values of around 90% can be
achieved.

The three components rely on numerous language-independent features which makes
them easily adaptable to other languages. Such features are for instance those which
are based on statistics derived from the tweets themselves, as well as contextual features
that can be learnt throughout the event. There are only a few features which rely on
some manually created thesauri such as suprisescore but those thesauri are small and can
be easily collected for each new language. However, there are also some features such as
POS, sentiment, mood, named entity and negations. These features require pre-processing
resources, which can sometimes be hard to find for less studied languages. Porting these
features thus assumes the availability of such resources in the respective language.

Despite the fact that our rumour detection component largely relies on context learnt
throughout the event, one of the limitations in stance and veracity classification is that we
narrowed our experiments only to tweets. We believe that knowledge beyond the tweets
may play a major role in further improving performance on these tasks. Such additional
knowledge could be e.g. derived through the URLs contained in the tweets and used to
achieve better performance. We are currently working on this where we aim integrate deep
learning on related news articles and use the resulting models in the prediction processes.
We do, however, leverage the sequence of the stream of tweets, which enables us to garner
additional knowledge about the discursive nature of rumours. While discourse has been
exploited for rumour detection and stance classification, we also plan to test it for veracity
classification.

Finally, two of the components presented in this deliverable, i.e. the rumour
stance classification and rumour veracity classification components, have been re-
leased as open source and also integrated into the GATE text analytics framework
(https://gate.ac.uk) as plugins. The code is also available from the PHEME website
(http://www.pheme.eu/software-downloads).

Bibliography

Baroni, M., Dinu, G., and Kruszewski, G. (2014). Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting semantic vectors. In ACL (1),
pages 238–247.

Bontcheva, K., Derczynski, L., Funk, A., Greenwood, M. A., Maynard, D., and Aswani,
N. (2013). TwitIE: An open-source information extraction pipeline for microblog text.
In Proceedings of the International Conference on Recent Advances in Natural Lan-
guage Processing. Association for Computational Linguistics.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S., Smola, A. J., and Kriegel,
H.-P. (2005). Protein function prediction via graph kernels. Bioinformatics, 21(suppl
1):i47–i56.

Buhmann, M. D. (2003). Radial basis functions: theory and implementations. Cambridge
Monographs on Applied and Computational Mathematics, 12:147–165.

Castillo, C., Mendoza, M., and Poblete, B. (2011). Information credibility on twitter. In
Proceedings of the 20th international conference on World wide web, pages 675–684.
ACM.

Celli, F., Ghosh, A., Alam, F., and Riccardi, G. (2016). In the mood for sharing contents:
Emotions, personality and interaction styles in the diffusion of news. Information Pro-
cessing & Management, 52(1):93–98.

Chen, D. and Manning, C. (2014). A fast and accurate dependency parser using neural
networks. In Proceedings of EMNLP 2014.

Chua, A. Y. and Banerjee, S. (2016). Linguistic predictors of rumor veracity on the inter-
net. In Proceedings of the International MultiConference of Engineers and Computer
Scientists, volume 1.

Cunningham, H., Maynard, D., and Bontcheva, K. (2011). Text processing with gate.
Gateway Press CA.

Derczynski, L., Lukasik, M., Srijith, P., Bontcheva, K., Hepple, M., Lobo, T. P., and
Radzimski, M. (2016). D6. 2.1 evaluation report-interim results. In PHEME Project
Deliverable.

34

BIBLIOGRAPHY 35

GPy (2012–2015). GPy: A Gaussian process framework in Python. http://github.
com/SheffieldML/GPy.

Guo, W. and Diab, M. (2012). Modeling sentences in the latent space. In Proceedings
of the 50th Annual Meeting of the Association for Computational Linguistics: Long
Papers-Volume 1, pages 864–872. Association for Computational Linguistics.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009).
The weka data mining software: an update. ACM SIGKDD explorations newsletter,
11(1):10–18.

Hamidian, S. and Diab, M. (2015a). Rumor detection and classification for twitter data.
The Fifth International Conference on Social Media Technologies, Communication,
and Informatics, SOTICS, IARIA, pages 71–77.

Hamidian, S. and Diab, M. T. (2015b). Rumor detection and classification for twitter data.
In Proceedings of the Fifth International Conference on Social Media Technologies,
Communication, and Informatics (SOTICS).

Hamidian, S. and Diab, M. T. (2016). Rumor identification and belief investigation on
twitter. In Proceedings of NAACL-HLT, pages 3–8.

Karlova, N. and Fisher, K. (2012). Plz RT: A social diffusion model of misinformation
and disinformation for understanding human information behaviour. In Proceedings of
an International Conference on Information Seeking in Context, ISIC ’12.

Kwon, S., Cha, M., Jung, K., Chen, W., and Wang, Y. (2013). Prominent features of
rumor propagation in online social media. In 2013 IEEE 13th International Conference
on Data Mining, pages 1103–1108. IEEE.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data. In Proceedings of the eighteenth
international conference on machine learning, ICML, volume 1, pages 282–289.

Liu, X., Nourbakhsh, A., Li, Q., Fang, R., and Shah, S. (2015). Real-time rumor de-
bunking on twitter. In Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, pages 1867–1870. ACM.

Lukasik, M., Cohn, T., and Bontcheva, K. (2015). Classifying tweet level judgements of
rumours in social media. arXiv preprint arXiv:1506.00468.

Lukasik, M., Srijith, P. K., Vu, D., Bontcheva, K., Zubiaga, A., and Cohn, T. (2016).
Hawkes processes for continuous time sequence classification: an application to ru-
mour stance classification in twitter. In Proceedings of the 54th Meeting of the As-
sociation for Computational Linguistics, pages 393–398. Association for Computer
Linguistics.

BIBLIOGRAPHY 36

Ma, J., Gao, W., Wei, Z., Lu, Y., and Wong, K.-F. (2015). Detect rumors using time series
of social context information on microblogging websites. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management, pages
1751–1754. ACM.

Mendoza, M., Poblete, B., and Castillo, C. (2010a). Twitter under crisis: Can we trust
what we RT? In 1st Workshop on Social Media Analytics, SOMA’10, pages 71–79,
Washington, DC, USA.

Mendoza, M., Poblete, B., and Castillo, C. (2010b). Twitter under crisis: can we trust
what we rt? In Proceedings of the first workshop on social media analytics, pages
71–79. ACM.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119.

Müller, A. C. and Behnke, S. (2014). Pystruct: learning structured prediction in python.
The Journal of Machine Learning Research, 15(1):2055–2060.

Qazvinian, V., Rosengren, E., Radev, D. R., and Mei, Q. (2011). Rumor has it: Identifying
misinformation in microblogs. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1589–1599. Association for Computational
Linguistics.

Ratkiewicz, J., Conover, M., Meiss, M., Gonalves, B., Flammini, A., and Menczer, F.
(2011). Detecting and tracking political abuse in social media. In 5th International
AAAI Conference on Weblogs and Social Media, ICWSM’11, Barcelona, Spain.

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., and Potts,
C. (2013). Recursive deep models for semantic compositionality over a sentiment tree-
bank. In Proceedings of the conference on empirical methods in natural language
processing (EMNLP), volume 1631, page 1642. Citeseer.

Somasundaran, S. and Wiebe, J. (2009). Recognizing stances in online debates. In Pro-
ceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP: Volume
1-Volume 1, pages 226–234. Association for Computational Linguistics.

Sutton, C. and McCallum, A. (2011). An introduction to conditional random fields. Ma-
chine Learning, 4(4):267–373.

Tausczik, Y. R. and Pennebaker, J. W. (2010). The psychological meaning of words: Liwc
and computerized text analysis methods. Journal of language and social psychology,
29(1):24–54.

BIBLIOGRAPHY 37

Tolmie, P., Procter, R., Rouncefield, M., Liakata, M., and Zubiaga, A. (2015). Microblog
analysis as a programme of work. arXiv preprint arXiv:1511.03193.

Vosoughi, S. (2015). Automatic detection and verification of rumors on Twitter. PhD
thesis, Citeseer.

Walker, M. A., Anand, P., Abbott, R., Tree, J. E. F., Martell, C., and King, J. (2012).
That is your evidence?: Classifying stance in online political debate. Decision Support
Systems, 53(4):719–729.

Wu, K., Yang, S., and Zhu, K. Q. (2015). False rumors detection on sina weibo by prop-
agation structures. In 2015 IEEE 31st International Conference on Data Engineering,
pages 651–662. IEEE.

Yang, F., Liu, Y., Yu, X., and Yang, M. (2012). Automatic detection of rumor on sina
weibo. In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics,
page 13. ACM.

Zeng, L., Starbird, K., and Spiro, E. S. (2016). # unconfirmed: Classifying rumor stance
in crisis-related social media messages. In Tenth International AAAI Conference on
Web and Social Media.

Zhao, Z., Resnick, P., and Mei, Q. (2015). Enquiring minds: Early detection of rumors in
social media from enquiry posts. In Proceedings of the 24th International Conference
on World Wide Web, pages 1395–1405. ACM.

Zubiaga, A., Liakata, M., Procter, R., Wong Sak Hoi, G., and Tolmie, P. (2016). Analysing
how people orient to and spread rumours in social media by looking at conversational
threads. PLoS ONE, 11(3):1–29.

