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Executive Summary

Online social networks play a major role in generating and disseminating informa-
tion, as well as being a platform where users tend to voice their opinion. Moreover,
social networks provide mainstream media and journalists an opportunity to obtain
real time information about events happening around the world. Understanding the
evolution of events in social networks is important for government organisations,
responders in crises, companies, and ordinary citizens.

This deliverable, in particular, addresses the challenge of modelling the evolu-
tion of rumours/phemes and user behaviour over time. Such longitudinal models
aim to predict which phemes will become popular in the near future, as well as
helping to identify the most influential users in spreading those phemes. This is
a very challenging problem, since phemes tend to exhibit highly complex temporal
behaviour.

The challenge of longitudinal modelling is addressed through the development
of several Hawkes process models. These consider the conversational structure,
social network information and, user profile metadata available in phemes. We
introduce embeddings of user features and use those to determine the influential
and susceptible users.

The different HP models are evaluated on synthetic and real pheme data sets.
We found that network information is crucial in learning user influence and that,
in turn, it affects the predictive performance. Regularizing the influence matrix
irrespective of the connection information can be detrimental.

The second part of the deliverable focuses on identifying spam users in phemes,
where we found the logistic regression classifier to perform best. The balance of
spam vs non-spam users in the training data was found to impact performance,
with the widely used MPI spam user dataset being the best for training. Manual
inspection of the top 100 suspected spam users in two pheme datasets found that,
in general, the amount of spam tweets and spam users within was very low.
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Chapter 1

Introduction

Online social networks play a major role in generating and disseminating informa-
tion, as well as being a platform where users tend to voice their opinion. Moreover,
social networks provide mainstream media and journalists an opportunity to obtain
real time information about events happening around the world. Understanding the
evolution of events in social networks is important for government organisations,
responders in crises, companies, and ordinary citizens.

This deliverable, in particular, addresses the challenge of modelling the evolution
of rumours/phemes and user behaviour over time. Such longitudinal models aim to
predict which phemes will become popular in the near future, as well as helping to
identify the most influential users in spreading those phemes.

This is a very challenging problem, since phemes (and memes) tend to exhibit
highly complex temporal behaviour. For instance, Figure 1.1 represents the evolu-
tion of different rumours associated with the Ferguson unrest in 2014.

Statistical models based on point processes provide a suitable framework for
modelling the temporal dynamics of Twitter. In particular, since a given tweet
may easily lead to a fast-spreading pheme this can be modelled using a self-exciting
point process, called Hawkes Process (HP) (Yang and Zha, 2013). HPs consider
the influence from previous tweets in the generation of future tweets. In particular,
we consider multivariate HPs, which consider the influence of other users in the
network when modelling the appearance of new tweets. The model has been found
useful for modelling the popularity of tweets (Zhao et al., 2015). This prior work,
however, does not consider features specific to Twitter, which we believe are useful
for modelling tweet popularity. Other related work on popularity prediction (Cheng
et al., 2014; Hong et al., 2011; Kupavskii et al., 2012; Suh et al., 2010) has indeed
used content, network, and temporal features, coupled with simple logistic regression
models. Our Hawkes Process approach combined elegantly those features with the
point process framework, resulting in models with better predictive performance.

The deliverable investigates different HP variants, which consider different

3
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Figure 1.1: Temporal profile of rumours in the Ferguson data set

Twitter-specific information. The first HP model considers the Twitter conversa-
tional threads, which convey information about infectivity, which can be useful in
predicting tweet popularity. The second HP model considers the user social net-
works. In Twitter, for each user we can obtain information about which users are
being followed by the given user. This can be used as a prior information, when
modelling influence among users. Twitter also makes available user statistics, such
as the user’s number of tweets, retweets, friends and followers. This information is
useful in modelling the influences with which the given user spreads information.

We evaluate the proposed models on the PHEME rumour datasets, collected
around key events such as the Ferguson unrest and the Ottawa shooting. We eval-
uate the ability of the different HP models to predict the evolution of rumours and
users behaviour. We found that incorporating Twitter features resulted in improved
performance.

The second part of the deliverable describes our work on detecting spam users
in rumorous threads. The ability to filter out spam users is key, as these users have
very low trustworthiness and their tweets should be disregarded during subsequent
rumour analysis.

1.1 Relevance to Pheme

The Pheme project aims to detect and study the emergence and propagation of
phemes in social media, i.e. memes with attached veracity information. An impor-
tant aspect of pheme analysis is predicting whether an emerging pheme is likely to
become viral, and thus needs to be acted upon urgently. This is precisely the task
addressed by the longitudal Hawkes Process models, described in this deliverable.
Likewise, as a given pheme is starting to gain momentum, our models aim to identify
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automatically the most influential users, responsible for the pheme propagation, as
well as identifying all spam users, who need to be filtered out.

1.1.1 Relevance to project objectives

Work in this deliverable is directly relevant to the third project objective, i.e. pre-
dicting pheme virality over time, and within users’ social networks. Identification
of influential users and untrustworthy users and their content is another key aspect
of this objective.

1.1.2 Relation to other workpackages

The methods reported in this deliverables make use of the linguistic pre-processing
components developed in WP2. They are now being integrated within the Pheme
veracity framework (WP6) and thus, the end users of the WP7 and WP8 prototypes
will soon be able to experiment with the results. The Pheme visual dashboard
(WP5) will be able to show influential users and viral phemes.

1.2 Related Work

Information cascades in social networks are predominantly modelled by extracting
relevant features and learning machine learning models. These approaches use con-
tent, network, and temporal features and learn simple regression models or regression
trees (Agarwal et al., 2009; Cheng et al., 2014; Bakshy et al., 2011). The problem
of predicting the popularity of tweets is solved as a classification problem consid-
ering content, network and user information in (Hong et al., 2011). In addition to
user features, (Kupavskii et al., 2012) also uses features determining flow of cascade
and PageRank to train a machine learning algorithm, which can predict number of
retweets. It is found in (Suh et al., 2010) that content features (e.g. hashtags and
URLs) and contextual features (e.g. number of followers) affect retweetability.

There are also approaches based on point process models, which do not require
extensive feature engineering to model Twitter dynamics. However, most of these
models are developed to infer the underlying influence network through information
cascades (Du et al., 2012; Gomez-Rodriguez et al., 2011; Gomez Rodriguez et al.,
2013b,a; Yang and Zha, 2013). These models were successfully applied to study
the spread of memes in social networks. Recently, (Zhao et al., 2015) developed a
model based on self exciting point processes to predict the popularity of tweets, while
(Lukasik et al., 2015a) used a log-Gaussian Cox processes to predict the evolution of
rumours. Our approach differs from this prior work in that it uses user, content and
network features in a point process framework to model the evolution of phemes and



CHAPTER 1. INTRODUCTION 6

behaviour of users. Thus, it conjoints two related approaches (point process based
and feature based) into a unified framework for modelling Twitter dynamics.



Chapter 2

Modelling Twitter Dynamics

We consider a set of N tweets, D = {d1, · · · , dN}, belonging to M phemes. Let
R denote the total number of users in the Twitter data set. Each tweet contains
information about their time of occurrence, text, pheme topic and the user who
generated the tweet. Thus, a tweet can be represented as a tuple dn = (tn,mn, in),
where: tn is the time of tweet occurrence, mn is the pheme topic and in is the user
generating the tweet. We assume the dataset is ordered by the time of occurrence of
tweets. Given the history of past occurrences of tweets, our goal is to predict future
occurrences of tweets (i.e. pheme virality), as well as identify influential users. We
use a point process framework to model the occurrence of tweets, namely a self-
exciting point process called Hawkes Process (HP). We propose various Hawkes
process models for predicting the temporal dynamics of phemes.

2.1 Point Processes

The problem of modelling longitudinal pheme dynamics can be solved using a point
process such as Poisson processes (Lukasik et al., 2015b; Perera et al., 2010) over
a continuous time period. Poisson processes indexed by time are also known as
counting processes as they count the number of occurrences of events (i.e. tweet
appearance) over time. A homogeneous Poisson process (HPP) assumes the intensity
to be constant (with respect to time), which makes them ill suited to modelling
pheme dynamics, which is much more irregular.

Inhomogeneous Poisson process (IPP) (Lee et al., 1991) can model tweets oc-
curring at a variable rate by considering the intensity to be a function of time, i.e.
λ(t). For example, in Figure 2.1 we show the points generated by an IPP with
two different intensity functions. The occurrence of points are different for the two
intensity functions. We can also observe that the number of point occurrences are
higher in the regions of larger intensity.

7
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Figure 2.1: Points generated from an inhomogeneous Poisson process with different
intensities

In an IPP, the number of tweets (y) occurring in an interval (0, s) is Poisson
distributed with rate

∫ s

0
λ(t)dt.

p(y|λ(t), (0, s)) = Poisson(y|
∫ s

0

λ(t)dt)

=
(
∫ s

0
λ(t)dt)y exp(−

∫ s

0
λ(t)dt)

y!
)(2.1

The rate
∫ s

0
λ(t)dt provides the expected number of occurrences in the interval [0, s].

Assuming an event occurred at time 0, the intensity function also allows us to find
the probability that no event occurs by time s (survival probability) which is given
by exp(−

∫ s

0
λ(t)dt). This is obtained by substituting y = 0 in Equation (2.1). The

probability density that an event occurs at time s in the interval (0, s) is obtained
from the survival probability as:

λ(s) exp(−
∫ s

0

λ(t)dt) )(2.2

2.2 Multivariate Hawkes Process

Due to the social nature of Twitter, users tend to influence one another – a process
which occurs alongside exposure to past tweets. Therefore, we propose to model
such mutually exciting phenomena between users and tweets through multi-variate
Hawkes processes. A multi-variate Hawkes process is modelled through an under-
lying non-negative intensity function which considers the influence of tweets from
other users. The intensity function models the self-exciting nature by adding up
influence from past tweets. We assume that the temporal dynamics of different ru-
mour categories are independent of each other, given their corresponding intensity
function.

The intensity function used in a Hawkes process depends on the history of pre-
vious occurrences of tweets. This is a conditional intensity function, depending on
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Figure 2.2: Intensity function associated with a Hawkes process

tweet history (Ht)1. The intensity function associated with a multivariate Hawkes
process takes the following form:

λin,mn(t) = µinγmn +
n−1∑
ℓ=1

I(mℓ = m)αiℓ,inκ(t− tℓ) )(2.3

where the first term represents the constant base intensity in which the tweets are
generated by user in for pheme mn. The second term represents the influence from
the tweets that happen prior to time of interest. The influence from each tweet
decays over time and is modelled using an exponential decay term κ(t − tℓ) =
ω exp(−ω(t − tℓ)). The matrix α of size R × R encodes the degrees of influence
between pairs of users generating the tweets. The influence the users have on each
other is asymmetric and so is the α matrix. The α matrix provides the underlying
influence network among the users. Since the intensity function has to be non-
negative, all the parameters associated with the intensity function are also non-
negative. Figure 2.2 shows example behaviour of an intensity function associated
with a Hawkes process.

The intensity function associated with the Hawkes process can be seen to be
obtained from the superposition of

1. Poisson process with constant intensity µiγm and

2. Poisson processes with intensities αiℓ,iκ(t− tℓ)

Hawkes process intensity function given in Equation (2.3) can be obtained by ap-
plying the Poisson superposition theorem (Kingman, 1993).

1For notational convenience, we ignore the conditioning of intensity with respect to Ht
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2.3 Considering Conversational Structure

The intensity function defined in (2.3) for a Hawkes process assumes all previous
tweets influence the current tweet. However, many of the new tweets are generated
in response to other unrelated tweets, in different conversational threads.

Therefore, we modify the model to take into account the tweet thread structure,
which explicitly encodes which tweets have influenced the generated tweet directly.
In addition, the proposed model avoids the computational complexity of summing
over all previous tweets for calculating the HP intensity function. We modify the
intensity function defined in (2.3) to consider this explicit infectivity information.

Let U represents an N ×N binary matrix with Uij representing whether tweet i
has influenced tweet j. If i influenced j, then Uij = 1 otherwise 0. In cases where the
infecting tweet is unknown, we assume the tweet is spontaneous, i.e. generated by
the user himself without influence of other tweets. In other words, we assume that
a tweet is either spontaneous or caused by another tweet. Thus, only one column in
a row of the matrix is 1 and the rest of the elements are 0. Also, tweets happening
later in time have no influence on the ones happening before. Hence, U is an upper
triangular matrix.

The consideration of conversational information leads to a Hawkes process (HP-
conversation) with intensity function defined as follows.

λin,mn(t) = µinγmnUnn +
n−1∑
ℓ=1

I(mℓ = m)Ulnαiℓ,inκ(t− tℓ) )(2.4

Here, only one of the term in (2.4)is active for a tweet. If the tweet is spontaneous,
then intensity is same as base intensity. If the tweet is under the infection of another
tweet, then the intensity is given by the influence the infecting tweet has on the
current tweet. The intensity function in (2.4) can also be written in a product form
as

λin,mn(tn) =
[
µinγmn

]Un,n

×
∏n−1

ℓ=1

[
αiℓ,inκ(tn − tℓ)

]I(mℓ=mn)Uℓ,n ,
)(2.5

where only one term in the product is active for any tweet.
The parameters associated with the intensity function are learnt by maximizing

the likelihood over observations. For a Hawkes process, the complete likelihood is
given by

L(t, i,m) =
N∏

n=1

λin,mn(tn)× P (ET ) )(2.6

where, P (ET ) represents the likelihood that no event happens in the interval [0, T ]
except at times given in the data set. Here, T represent an upper bound on the time
period considered in the data set.
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The likelihood p(ET ) is given by the survival function S(T ) =

exp(−
R∑
i=1

M∑
m=1

∫ T

0

λi,m(s)ds). The parameters in the Hawkes process model are es-

timated by maximizing the log-likelihood

ℓ(t, i|µ,γ,α, ω) =

+
N∑

n=1

logλin,mn(tn)−
R∑
i=1

M∑
m=1

∫ T

0

λi,m(s)ds
)(2.7

Substituting the intensity function defined in (2.5) in (2.7) results in the following
optimization problem:

arg maxµ,γ,α,ω

N∑
n=1

Un,n log(µinγmn)

+
N∑

n=1

n−1∑
ℓ=1

I(mℓ = mn)Uℓ,n logαiℓ,inκ(tn − tℓ)

−T
R∑
i=1

M∑
m=1

µiγm −
R∑
i=1

N∑
ℓ=1

αiℓ,iK(T − tℓ)

)(2.8

where K(T − tℓ) = 1−exp(−ω(T − tℓ)) arises from the integration of κ(t− tℓ). A co-
ordinate descent approach is followed to solve the optimization problem where each
parameter is solved keeping all others fixed. The updated values of the parameters
µ,γ and α can be obtained in a closed form.

µi =

N∑
n=1

Un,nI(in = i)

T

M∑
m=1

γm

γm =

N∑
n=1

Un,nI(mn = m)

T

R∑
i=1

µi

αi,j =

∑N
n=1

∑n−1
ℓ=1 I(mℓ = mn)I(il = i)I(in = j)Uℓ,n∑N

ℓ=1 I(il = i)K(T − tℓ)

)(2.9

The parameter ω is obtained by maximizing the following objective function using
gradient based techniques with the constraint ω to be positive.

J(ω) =
N∑

n=1

n−1∑
ℓ=1

I(mℓ = mn)uℓ,n (logω − ω(tn − tℓ))

+
N∑
ℓ=1

e−ω(T−tℓ)

R∑
i=1

αiℓ,i

)(2.10
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2.4 Influence decomposition

The user infectivity and susceptibility information is available from the influence
matrix. The rows of the influence matrix represents influential users, while the
columns represents susceptible users. The influence matrix can be decomposed to
learn latent features generating susceptible users and influential users. We propose
a HP model where we decompose the influence matrix to lower rank factors. These
lower rank factors provide latent features determining influence and susceptibility.

The advantage of the model is that it can learn the influence matrix with a lower
number of parameters. This is especially useful in social networks with large number
of users, as is the case with Twitter. Assuming the rank of the latent factors to be
K, we now need to estimate only 2×R×K parameters instead of R×R parameters.
This helps avoid over-fitting and thus could improve the predictive performance of
the model. The experimental results we discuss later support this claim.

We assume the influence matrix α can be decomposed into a product of two
lower dimensional matrices I and S of rank K as shown in Figure 2.3. Thus,
αi,j =

∑K
k=1 IikSjk, where I is the influence embedding and S is the susceptibil-

ity embedding. bI gives a lower dimensional latent representation of user features
governing influence, while bS provides a representation of user features governing
susceptibility. Since each element of α is positive, we consider a non-negative ma-
trix factorization of α into components I and S. This results in a Hawkes process
(HPdecomposition) with intensity function of the following form:

λin,mn(t) = µinγmnUnn +
n−1∑
ℓ=1

I(mℓ = m)Uln[I · S⊤]iℓ,inκ(t− tℓ). )(2.11

The latent factors are learnt by maximizing the log-likelihood obtained by plug-
ging the intensity function (2.11) in (2.7). We use a gradient based optimization
to learn the latent factors I and S. The optimization is constrained to maintain
non-negativity of the latent factors.

2.5 Network Information

Twitter also provides information about connectivity between users. Unlike other
social networks such as Facebook, the relation between users is not symmetric. In
Twitter users follow other users, for instance user i may follow user j while user j
may not follow user i. We can obtain ‘who follows whom’ information from Twitter
and this can be very useful in modelling the way users influence each other.

In other words, if user i follows user j, there is a higher chance that the tweets of
user i are influenced by user j than by those published by an unconnected user k. We
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Figure 2.3: Non-negative matrix factorization of Influence matrix

provide an approach to consider this prior social connection information in a Hawkes
process learning framework (HPconnection). This is achieved by regularizing the α
matrix appropriately while learning it using the Hawkes process framework.

Let F represent the set containing the followee and follower user pairs. The
users which are not connected in the network are less likely to influence each other.
For these users we would like to obtain low values in the corresponding entries of
the α matrix. This can be achieved by regularizing the values of the α matrix
corresponding to the disconnected users. We use L2 regularization (squared loss)
over such values. In this case, α is learnt by minimizing the following objective
function subject to the constraint that α ≥ 0.

arg maxα

N∑
n=1

Un,n log(µinγmn)

+
N∑

n=1

n−1∑
ℓ=1

I(mℓ = mn)Uℓ,n logαiℓ,in,mnκ(tn − tℓ)

−
R∑
i=1

N∑
ℓ=1

αiℓ,i,mℓ
K(T − tℓ)−

∑
i,j ̸∈F

α2
i,j

)(2.12

The gradient of (2.12) has a quadratic form and hence alpha can be obtained in a
closed form using the formula to find roots of a quadratic form.

2.6 Incorporating User Features

Twitter also provides user metadata, in addition to the conversational structures
and network information already discussed above. Therefore, we propose also a
corresponding modification of the Hawkes process approach, where user features are
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Table 2.1: User features used for learning influences.

Feature id Feature name
rt_ratio proportion of retweets

hash_ratio proportion of hashtags
hash_tok_rat hashtag-token ratio

ment_ratio proportion of user-mentions
unq_ment number of unique mentions
lnk_ratio links ratio

rpl_tw_ratio proportion of reply tweets
fav_cnt number of favourites
hist_tw number of historical tweets
pro_bgr binary profile background
pro_img binary profile image
pro_loc binary geolocation

taken into account (e.g. location, number of followers and followees). As demon-
strated in prior work, user features can play an important role in determining the
influence and susceptibility of Twitter users (Lampos et al., 2014). Next we demon-
strate how the underlying influence network (α) can be modelled to consider such
user features.

Let ui represent features of the ith user. Let the number of user features be
D. We find an embedding of the user features in a lower dimensional space of size
K. We assume that users have different embeddings representing their infectivity
and susceptibility. The infectivity embedding is obtained by linearly transforming
the user features using matrix I (of size D×K) while the susceptibility embedding
is obtained by linearly transforming user features through matrix S (of size D ×
K). The influence matrix α is obtained using a non-linear transformation of the
infectivity and susceptibility embeddings. We consider a sigmoid function as the
non-linear function, since it ensures non-negativity of elements in α.

The intensity function associated with a Hawkes process considering user features
(HPfeatures) is:

λin,mn(t) = µinγmnUnn+∑n−1
ℓ=1 I(mℓ = m)Ulnσ([uilI] · [uiS]

⊤)κ(t− tℓ)
)(2.13

where σ represents a sigmoid. In this case, we do not restrict the matrices I and S to
be non-negative, since we use the sigmoid to have a non-negative representation of
the influence matrix. The matrices I and S are learnt by maximizing the likelihood
(2.7) by plugging in the intensity function (2.13).

We consider the 12 user features listed in Table 2.1, which are contained in the
user field of each tweets and are thus readily available in the training data. The



CHAPTER 2. MODELLING TWITTER DYNAMICS 15

Algorithm 1 Ogata’s thinning algorithm for sampling points from Hawkes process
1: Input: conditional intensity function λ(t), past tweet occurrence times t1, t2, tn,

time T
2: Initialize t = tn, S = {}.
3: while t ≤ T do
4: Compute β = λ(t).
5: Generate candidate next arrival time from HPP (β), s ∼ exp(β)
6: Generate random number U ∼ Unif([0, 1])

7: if (t+ s > T ) or (U > λ(t+s)
β

) then
8: Set t = t+ s
9: else

10: Set t = t+ s, S = S ∪ t
11: end if
12: end while
13: Return: S

links ratio mentioned in Table 2.1 depends on the number of followers (ϕin), the
number of followees (ϕout) and the number of times a user has been listed by others
(ϕlis). The links ratio is calculated as in (Lampos et al., 2014)

log((ϕlis + 1)(ϕin + 1)2

ϕout + 1
) )(2.14

2.7 Prediction Algorithm

As noted above, the parameters associated with the intensity function are learnt
using a maximum likelihood approach. We use the learnt intensity function to make
predictions in the test interval. The predictions are done by sampling points from
the learnt intensity function using Ogata’s modified thinning algorithm (Ogata,
1981) (see Algorithm 1). The thinning algorithm is used to sample points from a
point process given their conditional intensity. Each step of the algorithm samples
a point from a Homogeneous Poisson Process (HPP) with a constant intensity β.
This intensity is taken as an upper bound to the conditional intensity λ(t) associated
with the Hawkes process. Assuming an event occurred at time u,in order to sample
a point in the interval [u, v], the algorithm considers an HPP with intensity β ≥
supt∈[u,v] λ(t). For a Hawkes process this supremum can be easily obtained as β =
λ(u). This is due to the fact that the intensity associated with a Hawkes process
is highest at the point of occurrence of the event and then decreases exponentially
over time. The point generated by the HPP with intensity β is accepted as a point
from a Hawkes process with probability λ(t)

β
.

We predict tweet occurrences separately for each user and each pheme, as well
as jointly across phemes and users. The prediction of a future tweet for a user i
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is done by considering an intensity function summed over all phemes, i.e. λi(t) =∑M
m=1 λi,m(t). Similarly, when we predict the likely virality of a pheme m, we

consider an intensity function λm(t) =
∑R

i=1 λi,m(t).
When predictions are made jointly across users and phemes, we consider the

intensity to be λ(t) =
∑R

i=1

∑M
j=1 λi,j(t).



Chapter 3

Experiments in Predicting Pheme
Virality and User Influence

We conduct experiments to study the behaviour of various Hawkes process models.
The experiments try to evaluate the predictive performance of the models as well
as their ability to predict popular rumours. We also study how well it can learn
influences between users. Learning influential users will be helpful in preventing the
spread of rumours in Twitter.

3.1 Evaluating predictive performance

This section describes experiments that evaluate the predictive ability of the different
HP models, introduced in the previous chapter. The models are trained on tweets
up until a given point in time and then the learnt models are used to predict likely
tweet time in the future. Predictive performance of the models is evaluated alongside
three different dimensions:

1. User centric: ability to predict future tweets of a given user, irrespective of
the pheme they appear in. This measures how well we model each user.

2. Pheme centric: ability to predict future tweets in each pheme, irrespective of
the user who generated it. This measures how well we model each pheme.

3. Joint: ability to predict future tweets, irrespective of the pheme and users.
This measures the overall predictive performance of each model.

Let the arrival times predicted by a model be (t̂1, . . . , t̂M) and let the actual
arrival times be (t1, . . . , tN). In these experiments, predictive performance is mea-
sured using aligned root mean squared error (ARMSE), which aligns the initial
K = min(M,N) arrival times and calculates the Root Mean Squared Error (RMSE)

17
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Table 3.1: Properties of the datasets

Data # Phemes # Users # tweets
Synthetic 5 5 2000
Ferguson 31 1481 2190
Ottawa 39 4096 6134

between the two sub-sequences of predicted and actual tweet arrival times. For the
user centric and pheme centric evaluations, ARMSE scores are calculated separately
for each user and pheme respectively and the average ARMSE is presented along
standard deviation.

Tweets are ordered based on their timestamps. The first 70% are used to learn
the parameters and the rest are used to evaluate the predictive performance of the
different HP methods.

In the rest of this chapter we report experiments on both synthetic and real world
pheme datasets. The purpose of the synthetic dataset is to evaluate the correctness
of the model. The real world datasets consists of phemes that emerged during two
major events: the Ferguson unrest and the Ottawa shooting. The properties of the
datasets are shown in Table 3.1. In all these experiments, tweet timestamps are
used at hourly grannularity.

The Hawkes process models discussed in Chapter 2 are compared against two
Hawkes process baselines:

1. HPbase: A Hawkes process model, which considers a constant influence matrix,
where all the values are set to 1.

2. HPregularization: A Hawkes process model, which learns the influence matrix
by regularizing all elements in the α matrix to be close to zero. This is achieved
by using L2 regularization over elements of the α matrix, irrespective of user
connection information.

3.1.1 Experiments on Synthetic Data

The synthetic dataset is generated by fixing the number of users, phemes and the
parameters associated with the intensity function. The times of tweets are simulated
using Ogata’s thinning algorithm.

In particular, the number of users and phemes in the synthetic data are both set
to 5. The parameters of the intensity function used to generate the synthetic data
are as follows: µ = [0.13, 0.13, 0.09, 0.14, 0.003] and γ = [0.97, 0.68, 0.92, 0.96, 0.64].
These values are generated randomly from a uniform distribution between 0 and 1.
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Figure 3.1: Ground truth and learnt α matrices for the synthetic experiment.

The parameter ω in the delay function is fixed to a constant 1. We assume users
1 and 2 influence user 3 and user 5 influences user 1. Therefore, the α values are
zero except for α1,3, α2,3 and α5,1 which are set to 0.45, 0.42 and 0.52 respectively.
We conduct experiments to verify the ability of each model to learn the influence
network, as well as evaluating the predictive performance.

Figure 3.1 provides the heat map associated with the influence matrix learnt
by the different HP models. We can observe that the α matrix learnt using HP-
conversation is close to the model α which generated the observations. We also
show the α matrix learnt using HPdecomposition with two different ranks. The
HPdecomposition with rank 1 was not able to learn the influences correctly, whereas
HPdecomposition with rank 2 performed better at this task.

We also conduct experiments to study the dependence of the influence matrix
on the number of training examples. Figure 3.2 depicts how the average relative
difference of α values learnt using HPconversation differs from the model α as more
and more points are generated using the model. We observe that with more points
available to learn α the difference becomes smaller and converges to zero.

The synthetic dataset is also useful for evaluating the predictive performance of
HPconversation and HPdecomposition. Since HPconnection requires a social net-
work and HPfeatures needs user features, we did not evaluate these methods on the
synthethic data, since it lacks these two types of information.

As can be seen in Table 3.2, in all three evaluation scenarios the inclusion of the
conversational structure and learning user-specific influences leads to a significantly
improved predictive performance. The HPdecomposition approach with rank 5 has
performed better than HPbase, but not as well as HPconversation. HPdecomposition
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Figure 3.2: Relative difference in learnt α values against number of points

Table 3.2: Results on the synthetic dataset, reporting using ARMSE

Approach User Pheme Joint
HPbase 4.39±2.88 3.42±3.03 3.31

HPconversation 0.74±1.19 0.17±0.20 0.22
HPdecomposition(5) 0.81±0.91 0.57±0.24 0.41

did not improve over HPconversation in the synthetic dataset, due to the smaller
number of users.

3.1.2 Experiments on the Ferguson phemes

The Ferguson dataset consists of tweets collected during the Ferguson unrest in 2014,
collected and annotated by journalists from SwissInfo (WP8). In particular, 2190
tweets were labelled manually by journalists, as belonging to 31 different phemes.
It contains tweets from 1481 users. For a detailed description, see (Zubiaga et al.,
2016).

First, we conduct experiments on the predictive performance of HPdecomposition
for a range of factors. Figure 3.3 plots how predictive performance in the rumour
centric evaluation varies with respect to the ranks of the factors used in decomposi-
tion. We can observe that lower rank factors tend to give better performance than
higher rank factors.

Next, Table 3.3 compares the various HP models on their ability to predict tweet
occurrence. We observe that HPconversation (learns influences among users based
on the conversation structure) was able to give a better predictive performance.
The performance of HPdecomposition approach with rank 100 was found to be close
to that of HPconversation but not as good. However, HPdecomposition with rank
1 outperformed HPconversations in all three evaluation settings. This is due to
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Figure 3.3: Variation in predictive performance of HPdecomposition with respect to
rank.

Table 3.3: Results on Ferguson data using ARMSE measure

Approach User Pheme Joint
HPbase 0.018±0.06 0.052±0.10 0.29

HPregularization 0.018±0.06 0.06±0.18 0.17
HPconversation 0.012±0.05 0.032±0.08 0.08

HPdecomposition(100) 0.013±0.04 0.038±0.06 0.12
HPdecomposition(1) 0.003±0.03 0.02±0.04 0.03

HPconnection 0.009±0.02 0.02±0.05 0.02
HPfeatures (1) 0.003±0.035 0.049±0.137 0.13

it needing a lower number of parameters to learn infectivity and, thus, avoiding
over-fitting. It is particularly useful with sparse data and a large number of users.

The results also demonstrate that HPconnection (which considers the network
information) also performs very well.

Table 3.3 also compares the predictive performance of the HP model which con-
sider user features(HPfeatures). Although it doesn’t offer significant performance
improvement, it does have the ability to learn the features affecting infectivity and
susceptibility. The main reason for the inferior performance of HPfeatures is due
to the non-linear transformation (sigmoid) which restricts the alpha values to be
between 0 and 1.

We learn the features influencing user infectivity and susceptibility from the
one dimensional matrices (weight vectors) that transform user features to a latent
dimension. Table 3.4 lists the features ordered by the magnitude of weight vector
values. We find that features such as number of historical tweets, reply tweets and
favourites have a larger impact on infectivity than other features. The susceptibility
of a user is mainly affected by links ratio and number of user mentions.
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Table 3.4: Top user features determining infectivity and susceptibility on Ferguson
data

Infectivity Susceptibility
feature id Value feature id Value
hist_tw 1.52 lnk_ratio -7.55

rpl_tw_ratio 0.68 ment_ratio -4.90
fav_cnt -0.59 unq_ment 4.40

hash_ratio 0.54 hash_ratio -3.72
unq_ment -0.49 rpl_tw_ratio -2.15
ment_ratio 0.39 fav_cnt 1.51
lnk_ratio -0.21 pro_bgr -0.99
pro_img 0.20 hist_tw 0.85

hash_tok_rat 0.15 pro_img -0.43
pro_bgr -0.03 pro_loc -0.34
pro_loc -0.01 hash_tok_rat 0.12
rt_ratio 0 rt_ratio 0

3.1.3 Experiments on the Ottawa phemes

The Ottawa data set consists of tweets related to shootings at the parliament build-
ing in Ottawa during October 2014 (Zubiaga et al., 2016). It is structured similarly
to the Ferguson dataset, including the complete tweet threads (i.e. source tweets
and their replies). The dataset consists of 6134 tweets covering 39 rumours and
4,096 users.

Table 3.5 reports predictive performance on this dataset, alongside the three user,
rumour and joint evaluation criteria. For user based evaluation, HPconnection gives
best performance. This implies that considering the underlying network information
is useful for learning influence matrices, which in turn helps predict user behaviour.

Unsurprisingly, for pheme-centric evaluation, connection information was not
found to be as useful as for user-centric evaluation. This is due to connection
information helping to predict tweeting behaviour of individual users, but not the
evolution of phemes over time. It was, nevertheless, found to be helpful in joint
evolution, due to the larger number of users.

As in the case of Ferguson, HPdecomposition outperforms HPconversation. Here,
HPfeatures is found to outperform HPconversation and HPdecomposition when pre-
dicting the joint evolution of phemes and users.

Next, Table 3.6 presents the list of user features influencing susceptibility and
infectivity, ordered by the magnitude of weight vector values. We find that the order
of user features affecting susceptibility is the same as in the Ferguson dataset, with
links ratio being the most important. In the Ottawa data set, the links ratio also
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Table 3.5: Results on the Ottawa dataset using ARMSE

Approach User Pheme Joint
HPbase 6.18±65.78 170.11±280.08 80.79

HPregularization 1.70±40.93 167.88±271.28 60.79
HPconversation 5.02±63.86 85.43±154.86 71.39

HPdecomposition (1) 4.34±67.21 79.83±155.83 73.17
HPconnection 1.60±49.97 134.53±206.94 34.91
HPfeatures (1) 5.04±65.91 82.42±154.87 70.25

Table 3.6: Top user features determining infectivity and susceptibility on the Ottawa
dataset

Infectivity Susceptibility
feature id Value feature id Value
lnk_ratio 3.61 lnk_ratio -2.26

rpl_tw_ratio 2.76 unq_ment 0.94
ment_ratio 1.97 ment_ratio -0.79

pro_bgr 1.01 rpl_tw_ratio -0.48
hash_ratio 0.91 hash_ratio -0.31

pro_loc 0.82 pro_bgr -0.22
unq_ment -0.67 pro_loc -0.11
pro_img 0.08 fav_cnt 0.08

hash_tok_rat 0.06 pro_img -0.06
fav_cnt 0.03 hist_tw 0.02
hist_tw 0.01 hash_tok_rat 0.02
rt_ratio 0 rt_ratio 0

has an impact on infectivity, unlike on the Ferguson dataset. In addition to links
ratio, the proportion of reply tweets affects infectivity while user mentions affect
susceptibility. This aligns well with the observations on the Ferguson data.

3.2 Predicting pheme virality

This section reports experiments on predicting pheme virality. More specifically, we
predict the future occurrences of tweets in each pheme until a time T and rank them
in descending order, based on the number of predicted tweets. We also rank phemes
according to the actual number of tweets observed until time T .

Both rankings are compared, based on the Spearman rank correlation coefficient
(see Table 3.7). A correlation coefficient value of 1 indicates perfect correlation and
a correlation value of 0 indicates no correlation.
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Table 3.7: Predicting pheme popularity, measured using the Spearman rank corre-
lation coefficient on the three datasets

Approach Synthetic Ferguson Ottawa
HPbase 0.9 0.45 0.65

HPregularization 0.9 0.52 0.66
HPconversation 0.9 0.70 0.68

HPdecomposition(1) 1.0 0.86 0.69
HPconnection N/A 0.66 0.68
HPfeatures (1) N/A 0.74 0.63

We observe that on the synthetic dataset, all approaches do well in predicting
popular phemes. Here, number of phemes is small and thus the task is not quite as
challenging as the two real world data sets.

On both Ferguson and Ottawa datasets HPdecomposition is the best at predict-
ing pheme popularity. There is not much difference in the scores of the different
approaches on the Ottawa data set.

3.3 Determining influential users

In order to determine which users are the most influential in spreading phemes, we
sum up the columns of the α influence matrix and rank users accordingly.

We consider a ranked list of users found influential by HPconversation and study
their influence on the two rumour data sets (Ferguson and Ottawa). The ranked
list of users obtained from the influence matrix is compared against a list of users
ranked by number of followers and also against a second list, ordered by the number
of replies they receive.

Table 3.8 shows the Spearman rank correlation coefficient between the two sets
of ranked lists The values indicate there is no significant correlation between the
influential users obtained from the influence matrix and those based number of
followers or replies. When we consider the top 100 most influential users according
to our matrix against those sorted by follower number, then there are 11 users in
common in the Ferguson data, while none overlap in the Ottawa dataset. Likewise,
when we consider the overlap between the top 100 users from the influence matrix
against the reply list, there are 6 users in common in the Ferguson data and 2 users
– in the Ottawa data.
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Table 3.8: Spearman rank correlation coefficient on rumour data sets for predicting
influential users

Followers Replies
Approach Ferguson Ottawa Ferguson Ottawa

HPconversation -0.0001 0.0069 -0.0035 -0.0060



Chapter 4

Detecting Untrustworthy Users

The viral spread of phemes through social media is often being exploited by a mi-
nority of untrustworthy users to spread spam. This chapter discusses features and
algorithms for detecting such spam users automatically.

Spam users and their tweets need to be filtered out, in order to reduce the over-
head in following fast spreading phemes with limited resources (e.g. by journalists
in a newsroom). Spammers typically try to disguise spam messages by augmenting
them with trending hashtags and by hiding the actual domain names in the URLs
through URL shortening.

Many approaches have been developed to identify spam users automati-
cally (Benevenuto et al., 2010; Lee et al., 2010; Yang et al., 2011; Lee et al., 2011;
Amleshwaram et al., 2013; Meda et al., 2014). Typically they use a set of user-
related features and a machine learning (classification) algorithm to classify users
into spam and non-spam. This chapter investigates how automatic spam detection
applies on the PHEME rumour data.

4.1 Spam Detection

We follow the standard approach of spam user classification by extracting user fea-
tures and training a classification model. We consider both user behaviour features
and content features (see Table 4.1 for details). These features were found to be the
best in discriminating spam users in previous studies (Benevenuto et al., 2010; Lee
et al., 2010; Meda et al., 2014).

4.1.1 Content features

Content features are derived from the user’s tweets in the dataset. In line with prior
work, we consider the following four features: 1. fraction of tweets with spam words
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Table 4.1: Features used for spam user classification

Feature id Kind Description
1 user fraction of followers to followees
2 content fraction of tweets with spam words
3 content fraction of tweets with URLs
4 content average number of hashtags per tweet
5 content average number of URLs per tweet
6 user number of followees
7 user number of followers
8 user number of tweets, for which the user received a reply
9 user number of tweets user replied
10 user age of user account

2. fraction of tweets with URLs 3. average number of URLs per tweet 4. average
number of hashtags per tweet

The first content feature is the fraction of tweets from the user, which contain
blacklisted spam words. For the latter, we use the regularly updated Wordpress list
of spam words 1.

URLs are the primary target of spammers, since Twitter shortens URLs and
hence it is hard for Twitter users to distinguish a spam URL from a legitimate URL.
Most spam tweets thus contain a URL leading an untrustworthy web site. Therefore
the URL plays an important role in distinguishing spam users from legitimate users.
We consider two features based on URL, the fraction of tweets from a user with
URL and the average number of URLs per tweet from a user. Higher value of these
two features tend can be indicative of spam users.

Lastly, in order to draw the widest attention possible, spammers typically post
tweets with a large number of trending hashtags. This motivates the last feature –
average number of hashtags per tweet for a user.

4.1.2 User behaviour features

User behaviour features characterise users based on their social interactions and
social network. We consider six such features: 1. fraction of followers to followees
2. number of followees 3. number of followers 4. number of tweet user receives a reply
5. number of tweets user replied 6. age of user account

Spam user accounts get suspended by Twitter frequently and thus spam user
accounts tend to be quite recent. Spam users also typically employ a link farming
strategy to get more followers so that they spread spam faster (Ghosh et al., 2012).

1Word press comment blacklist. https://github.com/splorp/wordpress-comment-blacklist/
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Essentially, they follow a large number of users, hoping that users will follow them
back by courtesy. Thus the number of followees, number of followers, and fraction
of followers to followees are three good features, potentially indicative of spam vs
legitimate users.

Lastly, spam users typically reply to a large number of tweets trying to spread
their spam message. At the same time, legitimate users generally do not reply to
spam tweets, which leads to a low number replies received by spam users.

4.1.3 Learning Algorithms

In line with prior work, we use two supervised machine learning algorithms (logistic
regression and Naive Bayes), with the features represented as vectors of values. Both
logistic regression and Naive Bayes are probabilistic classifiers, which associate a
probability with the predictions. Having a predictive probability is useful in ranking
users in the rumour datasets, according to their probability of being spam users.
The parameters of the models are learnt from a training data set, where users are
classified as either spammers or non-spammers.

4.2 Data

The supervised learning models are trained on two standard Twitter spam data sets,
where users are labelled as spam and non-spam: the MPI data and the social honey
pot data.

4.2.1 MPI data

The MPI dataset consists of 1065 users, with 355 users labelled as spammers and
the rest – as non-spammers (Benevenuto et al., 2010). The dataset was collected in
2009 by considering trending topics such as ‘Michael Jacksons death’, ‘Susan Boyle’s
emergence’ and ‘music Monday’. Spammers disguised their tweets by including
hashtags describing trending topics to reach a wider audience. Users were selected
for annotation, if their tweets contained trending topic hashtags and with at least
one URL. These users were annotated manually as spammer or non-spammer by
human volunteers.

The features listed in Table 4.1 are seen to have good discriminative power on
the MPI dataset. Figure 4.1 shows the distribution of feature values with respect
to the spammer and non-spammer classes. For example, Feature 2 (the fraction of
spam words in a tweet) has a value close to 0 for all legitimate users and a value
close to 1 for most of the spam users.
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Figure 4.1: Distribution of attribute values for spammer and non-spammer classes.
Blue represents non-spammers and Red represents spammers.

4.2.2 Social honey pot data

The social honey pot data was collected by studying the content polluters in Twitter
using honey pot accounts (Lee et al., 2011). The data consists of tweets of content
polluters (spammers) and legitimate users collected in the period December, 2009
to August, 2010.

The data contains 22,223 content polluters and 19,276 legitimate users. The
content polluters are collected by selecting Twitter users who contacted more than
one among 60 honey pot accounts deployed in Twitter. They found that Twitter
eventually suspended 23% of the identified content polluters, indicating they are
spam users. Clustering analysis further confirmed the spamming behaviour of the
content polluters. The legitimate users are obtained by monitoring user accounts
for a few months and randomly sampling users not suspended by Twitter. The
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features listed in Table 4.1 are extracted from the data set, considering the network
information of users and and their tweets.

4.3 Experimental Results

We train a logistic regression and naive Bayes classifiers 2 on the features extracted
from the annotated datasets and study the predictive performance of the classifiers
on the two traditional spam datasets, as well as on the two PHEME datasets (Fergu-
son and Ottawa) introduced in Chapter 3. We first study the predictive performance
of the classifiers on the two traditional spam datasets.

4.3.1 MPI data

The predictive performance of the classifiers on the MPI dataset is evaluated using
5-fold cross-validation. Table 4.2 shows the precision, recall and f-score values of
the classifiers on the MPI data.

We observe that logistic regression outperformed slightly Naive Bayes and also
that performance of both approaches is better on the non-spam class, than on the
spam class. In particular, the classifiers could recall only around 70% of the spam
users, while they recalled more than 90% of the non-spam users.

Table 4.3 shows the confusion matrix for each of the two classifiers. Logistic
regression was able to correctly classify comparatively more spam and non-spam
users. Previous results on this data set (using Random Forest) reported an F-
score of 0.92 for non-spammers and 0.82 for spammers (Meda et al., 2014). Our
logistic regression approach performs similarly on non-spammers, while still needing
a little further improvement on detecting spammers. Nevertheless, we chose logistic
regression for its probabilistic output.

Table 4.2: Performance of logistic regression and Naive Bayes on MPI data.

Logistic Regression Naive Bayes
Class Precision Recall F-score Precision Recall F-score

Non-spam 0.858 0.938 0.901 0.85 0.928 0.888
Spam 0.848 0.70 0.761 0.824 0.673 0.741

micro-average 0.855 0.855 0.851 0.842 0.843 0.839

2We use the Weka implementation of these classifiers with default parameters.
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Table 4.3: Confusion matrix on the MPI data for logistic regression and Naive Bayes.

Predicted class
logistic Regression Naive Bayes

Actual class Non-spam Spam Non-spam Spam
Non-spam 666 44 659 51

Spam 110 245 116 239

4.3.2 Social Honey pot Data

The predictive performance of the classifiers on the Social Honey pot data using
5-fold cross-validation is provided in Table 4.4 and Table 4.5.

Again, the logistic regression model is seen to perform much better than the
Naive Bayes classifier, with good recall and accuracy on both spam and non-spam
classes. Naive Bayes misclassified 17 – 19 % of users from each category, while
logistic regression misclassified only around 10 – 12% of users.

Table 4.4: Performance of logistic regression and Naive Bayes on social honey pot
data.

Logistic Regression Naive Bayes
Class Precision Recall F-score Precision Recall F-score

Non-spam 0.89 0.898 0.894 0.837 0.839 0.838
Spam 0.905 0.897 0.901 0.85 0.849 0.85

micro-average 0.898 0.898 0.898 0.844 0.844 0.844

Table 4.5: Confusion matrix on the social honey pot data for logistic regression and
Naive Bayes.

Predicted class
logistic Regression Naive Bayes

Actual class Non-spam Spam Non-spam Spam
Non-spam 17268 1959 16128 3099

Spam 2128 18601 3133 17596

4.3.3 Rumour Data

The last experiment is investigating the presence of spam users in the Ferguson
and Ottawa rumour data sets, using the classification algorithm learnt from the
annotated training data sets. We considered the Ferguson rumour data with 3309
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Table 4.6: Spam tweets of suspended users in Ferguson and Ottawa

Ferguson
User id Tweet

377440844 @Virtuous_QueenT https://t.co/BdIdMLkVgs
@TheDailyEdge https://t.co/8VXgx4qJEl @Ian56789
https://t.co/8VXgx4qJEl

275331952 @ReutersUS http://t.co/Fmb6dDwOEL @ReutersUS
http://t.co/KgeCZVWWLp

2727770608 @PrisonPlanet @LeeCF80 How about this
http://t.co/cdEHPUe10G

Ottawa
User id Tweet

2796029406 @BBCNewsUS @BBCWorld #Islamic_State Message
from Mujahid http://t.co/fq0T6xffRr

2598218616 @Reuters بالله شوفوآ عجيب حساب وربي هههههه @Question_arab

2252226043 @AP https://t.co/8jMhL2fC0O

users and Ottawa rumour data with 4168 users. The rumour data sets do not
categorise already users into spammers vs non-spammers and hence, we cannot use
these for training the models. This also makes a full-fledged evaluation on the
rumour data sets not possible, without expensive human re-annotation.

Instead, here we carry out partial evaluation, by considering suspended users as
spammers and also by analysing the tweets of the users which the logistic regression
classifier marked as spammers with the highest probability.

In more detail, since the main reason for Twitter to suspend users is their spam-
ming behaviour, first we investigated whether we can find such suspended users in
the rumour data sets, by trying to obtain their profile information via the Twitter
API. If it returns a message that the user is ’suspended’, then that user is added to
our suspended users list.

In this way we established that 49 users in the Ferguson dataset and 56 users
in the Ottawa dataset were suspended by Twitter. Table 4.6 lists some suspended
users and their tweets which were found to be spam.

In our experiments we treat those suspended users as suspected spam users and
evaluate the performance of the logistic regression classifier on the rumour datasets.
We chose logistic regression since it was consistently the better performing classifier.

First, we consider the performance of the logistic regression classifier trained on
the MPI data set and tested on the rumour datasets. Table 4.7 provides the pre-
cision, recall, F-score measures of logistic regression on both Ferguson and Ottawa.
Table 4.8 provides the confusion matrix for the same.

Unsurprisingly, it can classify the non-spam users with high precision and recall,
while performance on the spam class (suspended users) is quite low. However, these
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figures do not indicate that the model is not able to find spam users, since we
ourselves found through manual inspection that only 3 users out the 49 suspended
users in Ferguson and 8 users from the 56 in Ottawa showed spamming behaviour.
Considering these figures, the logistic regression was able to identify 1 out of 3 spam
users (0.33 recall ) and 2 out of 8 spam users (0.25 recall). The logistic regression
model identified 104 users in Ferguson and 147 users in the Ottawa dataset as spam.

Table 4.7: Performance of logistic regression trained on MPI data and tested on
Ferguson and Ottawa rumour data

Ferguson Ottawa
Class Precision Recall F-score Precision Recall F-score

Non-spam 0.985 0.968 0.977 0.987 0.965 0.976
Spam (suspended) 0.01 0.02 0.013 0.014 0.036 0.02

micro-average 0.971 0.954 0.962 0.973 0.952 0.963

Table 4.8: Confusion matrix obtained with logistic regression trained on MPI data
and tested on Ferguson and Ottawa rumour data

Predicted class
Ferguson Ottawa

Actual class Non-spam Spam Non-spam Spam
Non-spam 3157 103 3967 145

Spam (suspended) 48 1 54 2

Table 4.9 provides the precision, recall, F-score measures of logistic regression
model trained on the social honey pot dataset and tested on the Ferguson and
Ottawa tweets. Table 4.10 provides the confusion matrix for the same.

We find that the logistic regression model trained on the social honey pot data
classified a large number of users as spam. For instance, it classified 2,59 users
in Ferguson and 3,271 users in Ottawa as spam users, which leads to very poor
precision. The model achieve higher recall on spam users at the expense of classifying
legitimate users as spam. Therefore, the model learnt from the social honey pot data
is not well suited to spam detection on rumourous threads, since the misclassification
cost of classifying a legitimate user as spam is higher than that of classifying a spam
user as a legitimate one. Besides, the social honey pot dataset is artificially balanced
in terms of ratio of spam vs non-spam users in the training data, whereas spam users
tend to be a minority in the rumorous threads in PHEME.

In our last experiment, we consider the logistic regression model trained on the
MPI dataset and analyse the tweets of the top spam-classified users in the rumour
datasets. This is possible, since logistic regression is a probabilistic classifier which
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Table 4.9: Performance of logistic regression trained on the social honey pot data
and tested on the Ferguson and Ottawa rumour data

Ferguson Ottawa
Class Precision Recall F-score Precision Recall F-score

Non-spam 0.996 0.278 0.434 0.99 0.216 0.355
Spam (suspended) 0.019 0.918 0.037 0.014 0.839 0.028

micro-average 0.981 0.287 0.428 0.977 0.225 0.351

Table 4.10: Confusion matrix obtained with logistic regression trained on the social
honey pot data and tested on the Ferguson and Ottawa rumour data

Predicted class
Ferguson Ottawa

Actual class Non-spam Spam Non-spam Spam
Non-spam 905 2355 889 3223

Spam (suspended) 4 45 9 47

outputs the probability with which a user is classified as spam. We consider 100 users
classified as spam by the logistic regression model, ordered by decreasing probability.
Next we analysed their tweets to see if they showed any spamming behaviour.

Based on our manual inspection, in the Ferguson data we found only 2 spam
users, while in the Ottawa data we found 5 spam users. Table 4.11 shows some
example tweets from those users.
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Table 4.11: Spam tweets of users found to be spam by logistic regression in Ferguson
and Ottawa

Ferguson
User id Tweet

1359421328 #FergusonShooting #KillerCops #MichaelBrown
https://t.co/m8ju5jvIiW

275331952 @ReutersUS http://t.co/Fmb6dDwOEL @ReutersUS
http://t.co/KgeCZVWWLp

Ottawa
User id Tweet

2796029406 @BBCNewsUS @BBCWorld #Islamic_State Message
from Mujahid http://t.co/fq0T6xffRr

1656323702 @cnnbrk #Networking #Crowdfunding #exposure +
#hit = #millions http://t.co/Rh69mRtZMJ

2153254021 @cnnbrk company https://t.co/liBfXjcv6y #ROC
#SmallBusiness #the585



Chapter 5

Conclusion

This deliverable addressed the challenges of modelling phemes, users, and their
trustworthiness over time.

For longitudinal modelling of pheme virality and user susceptibility, we proposed
an effective approach that combines social network and user features into a point
process framework. We considered the Twitter conversational structure in a modified
Hawkes process model, which has the computational advantage in that it avoids
summation over all previous tweet occurrence times. The model was found to be
useful in learning user influences.

An HP model which considered a non-negative matrix factorization of user in-
fluences to lower rank factors was found to be effective in improving the predictive
performance. It reduces the number of parameters to learn and is especially useful
in modelling social networks with a large number of users. We found that net-
work information is crucial in learning user influence and that, in turn, it affects
the predictive performance. Regularizing the influence matrix irrespective of the
connection information can be detrimental.

Although user features were not found to be useful for improving predictive
performance, they are really useful as features for learning the infectivity and sus-
ceptibility of users. For example, links ratio was found to be useful for determining
user influence.

The second part of the deliverable focused on identifying spam users in phemes,
where we found the logistic regression classifier to perform best. The balance of
spam vs non-spam users in the training data was found to impact performance,
with the widely used MPI spam user dataset being the best for training. Manual
inspection of the top 100 suspected spam users in two pheme datasets found that,
in general, the amount of spam tweets and spam users within was very low.

Work is ongoing on integrating these methods in Kafka, evaluating them with
users, and also on refining them further based on those evaluation outcomes.
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