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Abstract—Online social networks provide a platform for
sharing information at an unprecedented scale. Users generate
information which propagates across the network resulting in
information cascades. In this paper, we study the evolution of
information cascades in Twitter using a point process model
of user activity. We develop several Hawkes process models
considering various properties including conversational structure,
users’ connections and general features of users including the
textual information, and show how they are helpful in modeling
the social network activity. We consider low-rank embeddings
of users and user features, and learn the features helpful in
identifying the influence and susceptibility of users. Evaluation
on Twitter data sets associated with civil unrest shows that
incorporating richer properties improves the performance in
predicting future activity of users and memes.

I. INTRODUCTION

Online social networks play a major role in dissemina-
tion of information. They provide main stream media with
an opportunity to obtain real time information about events
happening around the world. Understanding the evolution of
events in social networks is important for a variety of reasons.
For instance, it can help authorities prevent the spread of
misinformation or rumors that are starting to disseminate
through social networks.

In this paper, we consider problems of predicting which
memes become popular in the future and which users will
be most active. Tweets exhibit a highly complex temporal
behaviour which is not easy to model. For instance, Figure 1
shows the evolution of different memes associated with the
Ferguson unrest in 2014. Statistical models based on point
processes have been proposed for modeling the temporal
dynamics of Twitter [1]. In Twitter, a tweet can elicit further
tweets, thus leading to a cascade. Such dynamics can be cap-
tured using self-exciting point processes such as Hawkes pro-
cess (HP). Multivariate Hawkes process [2] models influence
from other users in the network in generation of new tweets.
Another stream of research on popularity prediction [3], [4],
[5], [6] considered features such as tweet content, network and
temporal descriptors, and applied simple regression models to
predict tweet popularity. However, none of these works con-
sidered features in a point process framework which we argue
provides a much better model of tweet occurrences. In this

paper, we propose a model which elegantly combines social
media features in a Hawkes process framework, resulting in
models with excellent predictive performance.

We develop HP models which leverage various user features
and network properties in Twitter. First, we develop a model
over the conversation structure in Twitter, which we use to
limit infectivity to individuals who react to other’s posts. This
results in a computationally efficient and scalable HP model.
A second model considers the local network connectivity
between the users to bias the learned user influence. Our
third innovation is to incorporate rich user features in Twitter,
which includes the profile information, individual’s number
of tweets, retweets and textual information in their tweets
such as mentions, hashtags etc. We use these characteristics to
parameterize user influences, based on a matrix decomposition
technique inspired by the deep learning literature. This allows
us to determine factors driving influence and susceptibility. We
show that these additional information sources yield accuracy
gains when applied to several collections of publicly available
rumour datasets from Twitter [7]. The software implementing
the HP models will be released upon publication.

The novelty of this paper lies in developing new Hawkes
Process models: 1) considering conversation structure informa-
tion, 2) considering network information, 3) integrating user
features including textual information, and 4) learning user
features determining influence and susceptibility.

II. RELATED WORK

Information cascades in social networks are predominantly
modeled using regression or classification models over ex-
tracted features. The features used include tweet content,
network and temporal features [8], [3], [9], [4]. The problem of
predicting the popularity of tweets is solved as a classification
problem considering content, network and user information
in [4]. In addition to user features, [5] also uses features
determining flow of cascade and page rank to train a learning
algorithm which can predict number of retweets. It is found
in [6] that retweet dynamics are affected by content features
such as hashtags and urls and contextual features such as the
number of followers.



Fig. 1. Temporal profile of memes in the Ferguson data set.

There also exist approaches based on point processes to
model the Twitter dynamics. However, most of such ap-
proaches are developed to infer the underlying influence
network [10], [11], [12], [13], [2], [14], [15]. Seismic [1]
is a recent model based on the self exciting point processes
developed to predict the final number of reshares of a post.
A networked Weibull regression model was proposed in [16]
to predict the size of the cascades by considering behavioral
dynamics. A Hawkes process approach which consider the
circadian nature of users is developed in [17] to model the
retweet dynamics of posts in Twitter. Our approach differs
from the related work in that it incorporates user, content
and network features into the Hawkes process framework
to model Twitter dynamics. Thus, it conjoins two related
approaches (point process based and feature based) into a
unified framework to model Twitter dynamics.

III. PROBLEM FORMULATION

We consider a set of N tweets, D = {d1, . . . , dN},
belonging to M memes. Let R denote the total number of
users in the Twitter data set. Each tweet contains information
about their time of occurrence, meme topic and the user who
generated the tweet. Thus, a tweet can be represented as a tuple
dn = (tn,mn, in), where tn is the time of tweet occurrence,
mn is the meme id and in is the id of a user who generated
the tweet. Given the history of past occurrences of tweets, our
goal is to predict future occurrences of tweets, future tweets
from a particular user (i.e. user activity) and future tweets
about a particular a meme (i.e. meme virality), considering
conversation information (U ), connection information (F)
and user features (x) in a point process framework. Table I
summarizes the notations.

IV. MODEL

The longitudinal data arising in Twitter can be modeled
using a point process over a continuous time period such
as a Poisson process [18], [19]. It is characterized by rate
parameter or intensity λ > 0 which provides the expected
number of tweets happening in unit time. A homogeneous
Poisson process (HPP) assumes the intensity to be constant
(with respect to time), which makes them ill suited to modeling
Twitter dynamics, which is much more irregular. Inhomoge-
neous Poisson process (IPP) [20] can model tweets occurring

TABLE I
TABLE OF SYMBOLS

Symbol Description
(tn,mn, in) User in, meme mn and time tn of nth tweet

U Conversation information
F Connection information
xi Features of user i
λi,m Intensity of user i for meme j
µ User base intensities
γ Meme base intensities
α Influence matrix of users
κ(t) Exponential decaying function
N Total number of tweets
R Total number of users
M Total number of memes

at a variable rate by considering the intensity to be a function
of time, i.e. λ(t).

Due to the social nature of Twitter, users tend to influence
one another – a process which occurs alongside exposure
to past tweets. A multi-variate Hawkes process defines an
underlying non-negative intensity function which considers the
influence of tweets from other users. The intensity function
associated with a multivariate Hawkes process takes the fol-
lowing form:

λin,mn
(t)=µinγmn

+
n−1∑
`=1

I(m`=mn)αi`,inκ(t− t`) (1)

where the first term represents the constant base intensity in
which the tweets are generated by user in for meme mn. Here,
µin is the base intensity with which user in generates tweets
and γmn

is the base intensity with which tweets are generated
for meme mn. The second term represents the influence from
the tweets that happen prior to time of interest. The influence
from each tweet decays over time and is modeled using
an exponential decay function κ(t− t`) = ω exp(−ω(t− t`)).
The asymmetric matrix α of size R × R encodes the latent
degrees of influence between the pairs of users generating the
tweets.

A. Considering Conversational Structure

The intensity function defined in (1) for a Hawkes pro-
cess assumes all previous tweets influence the current tweet.
However, many of the new tweets are generated in response



to some particular tweet in a conversation thread, and this
conversation structure is observed in Twitter. Therefore, we
modify the intensity function to take into account the tweet
thread structure. In addition, the proposed model avoids the
computational complexity of summing over all previous tweets
for calculating the HP intensity function.

Adding conversational information leads to a Hawkes pro-
cess (HPconversation) with intensity function

λin,mn
(t) = µinγmn

Un,n
+
∑n−1
`=1 I(m` = mn)U`,nαi`,inκ(t− t`).

(2)

where U represents an N × N binary matrix with U`,n
containing information whether the tweet n was influenced
by a previous tweet ` < n (U`,n = 1) or is spontaneous
(Un,n = 1) 1. Here, only one of the terms in (2) is active for
a tweet: spontaneous tweets have only the base intensity (first
term), and tweets replying to another tweet have only one of
the second intensity term. The intensity function in (2) can
also be written in a product form as

λin,mn
(tn) =

[
µinγmn

]Un,n

×
∏n−1
`=1

[
αi`,inκ(tn − t`)

]I(m`=mn)U`,n ,
(3)

where only one term in the product is active for any tweet.
The parameters associated with the intensity function are

learnt by maximizing the likelihood over observations. For a
Hawkes process, the complete likelihood is given by

N∏
n=1

λin,mn(tn)×exp

(
−

R∑
i=1

M∑
m=1

∫ T

0

λi,m(s)ds

)
(4)

where T represents an upper bound on the considered time
period. The parameters in the Hawkes process model are
estimated by maximizing the log-likelihood.

argmax
µ,γ,α,ω

N∑
n=1

Un,n log(µinγmn
) (5)

+

N∑
n=1

n−1∑
`=1

I(m` = mn)U`,n log(αi`,inκ(tn − t`))

− T
R∑
i=1

M∑
m=1

µiγm −
R∑
i=1

N∑
`=1

αi`,iK(T − t`) ,

where K(T − t`) = 1 − exp(−ω(T − t`)) arises from the
integration of κ(t− t`). A coordinate descent approach is fol-
lowed to solve the optimization problem where each parameter
is computed keeping all others fixed. The parameters µ,γ and
α have closed form updates, while the parameter ω is learned
using gradient optimisation.

We also learn a variant of HPconversation, HPregulariza-
tion, which performs `2 regularization of the influence matrix.
It results in an additional regularization term, −

∑
i,j α

2
i,j , in

the log-likelihood which provides better generalization ability
to the proposed HP model. In this case, α is obtained in a

1In the case of Twitter, this information is readily available from the
‘in reply to status id’ field of the JSON representation of tweets.

closed form using the formula to find roots of a quadratic
form.

B. Network Information

Twitter also provides information about connectivity among
the users. The user connectivity in Twitter is asymmetric in
nature, i.e. user i may follow user j while user j may not
follow user i. We can obtain ‘who follows whom’ information
from Twitter and this can be very useful in modeling the way
users influence each other. If user i follows user j, there is a
higher chance that the tweets of user i are influenced by user j
than by those published by an unconnected user k. We provide
an approach, HPconnection, which considers this prior social
connection information in a Hawkes process learning frame-
work. HPconnection performs a selective `2 regularization of
the α matrix entries corresponding to the disconnected users.
This leads to disconnected users in the network to have low
values in α matrix and hence low influence. The α matrix is
estimated by maximizing log-likelihood term and an additional
regularization term, −

∑
i,j 6∈F α

2
i,j , where F is the pairs of

connected users in the follow graph. The regularized values
of α is obtained by solving for roots in a quadratic form.

C. Influence decomposition

An issue with the HPconversation model above is that the
number of parameters in α is quadratic in number of users R.
This results in over-fitting when modeling typical social media
datasets which have large R and sparsely occurring tweets by
each individual. We consider a HP model, HPdecomposition,
to address this problem using a low-rank decomposition of
the influence matrix. The advantage of the model is that it can
learn the influence matrix with a lower number of parameters,
and helps to avoid over-fitting to sparse data.

We assume the influence matrix α can be decomposed
into a product of two lower dimensional matrices α = IS>,
with both matrices of rank K � R. We call I the influence
embedding matrix and S the susceptibility embedding matrix,
which give a lower dimensional latent representation of user
features governing influence and susceptibility, respectively.
Since each element of α must be positive, we enforce all
elements of I and S to be positive. This results in a Hawkes
process (HPdecomposition) with intensity function of the
following form:

λin,mn
(t) = µinγmn

Un,n+∑n−1
`=1 I(m` = mn)U`,n[I · S>]i`,inκ(t− t`).

The latent factors are learnt by maximizing the log-
likelihood of the data under this model. We use the LBFGS-B
gradient based optimization method to learn I and S, with
parameters bounded to ensure non-negativity.

D. Incorporating User Features

We propose a modification of the HPdecomposition which
considers features specific to social media users. They can play
an important role in determining user impact on Twitter [21].
We consider user features listed in the first column of Ta-
ble II in modeling the underlying influence network (α). This



TABLE II
USER FEATURES DETERMINING INFECTIVITY (INF.) AND SUSCEPTIBILITY

(SUSC.), WITH LEARNED WEIGHTS SHOWN FOR THE FERGUSON AND
OTTAWA TRAINED RANK 1 MODELS (HIGHEST MAGNITUDE IN BOLD.)

FEATURES DESCRIBED IN [21].

Ferguson Ottawa
Feature susc. inf. susc. inf.

# favourites -0.59 1.51 0.08 0.03
# historical tweets 0.85 1.52 0.02 0.01
# unique mentions 4.40 -0.49 0.94 -0.67
geolocation -0.34 -0.01 -0.11 0.82
hashtag-token ratio 0.12 0.15 0.02 0.06
links ratio -7.55 -0.21 -2.26 3.61
profile background -0.99 -0.03 -0.22 1.01
profile image -0.43 0.20 -0.06 0.08
prop. hashtags -3.72 0.54 -0.31 0.91
prop. reply tweets -2.15 0.68 -0.48 2.76
prop. user-mentions -4.90 0.39 -0.79 1.97

includes profile information as well as linguistic infomation
extracted from historical tweet of users such as proportion of
hashtags, mentions etc.

Let xi represent the L dimensional features associated with
the ith user. We find an embedding of the user features in a
lower dimensional space of size K. We assume that users have
different embeddings representing their infectivity and suscep-
tibility. The infectivity and the susceptibility embeddings are
obtained by linearly transforming the user features through
matrices A and B (of sizes L×K) respectively. The influence
matrix α is obtained using a non-linear transformation of these
embeddings, with a sigmoid activation function which ensures
non-negativity of α. The intensity function associated with a
Hawkes process considering user features (HPfeatures) is:

λin,mn(t) = µinγmnUn,n+∑n−1
`=1 I(m`=mn)U`,nσ

(
[xilA]·[xinB]>

)
κ(t− t`)

where σ(z) = 1
1+exp(−z) is the logistic sigmoid. Since we

use the sigmoid to obtain a non-negative representation of
the influence matrix, we do not have to restrict the matrices
A and B to be non-negative. This helps to better model
the correlations across the features in determining influence
and susceptibility of the users. The parameters, including
the matrices A and B, are learnt by maximizing the log-
likelihood.

The links ratio mentioned in Table II depends on the number
of followers (φin), the number of followees (φout) and the
number of times a user has been listed by others (φlis). It is
calculated as log

(
(φlis+1)(φin+1)2

φout+1

)
[21].

V. PREDICTION ALGORITHM

We use the intensity function, with parameters learnt by
maximizing the likelihood, to make predictions about future
tweet occurrences in the test interval. The predictions are done
by sampling points from the learnt intensity function using
Ogata’s modified thinning algorithm (see Algorithm 1) [22].
The algorithm samples a point from a Homogeneous Poisson

Algorithm 1: Ogata’s thinning algorithm for sampling
points from a Hawkes process

1: Input: conditional intensity function λ(t), past tweet
occurrence times t1, t2, tn, time T

2: Initialize t = tn, S = {}.
3: while t ≤ T do
4: Compute β = λ(t).
5: Generate candidate next arrival time from HPP (β),

s ∼ exp(β)
6: Generate random number U ∼ Unif([0, 1])
7: if (t+ s > T ) OR (U > λ(t+s)

β ) then
8: Set t = t+ s
9: else

10: Set t = t+ s, S = S ∪ t, Update Intensity λ(t)
11: end if
12: end while
13: Return: S

Process (HPP) with a constant intensity β which is an upper
bound to the conditional intensity λ(t) in the interval of
interest. For a HP with an exponentially decaying function,
β can be easily obtained which is the intensity value at the
preceding event. The point generated by the HPP is accepted
as a point from a Hawkes process with probability λ(t)

β .
Future points are generated by repeating the whole process
with the intensity conditioned on the accepted point. During
prediction, we consider the contribution from all the previous
tweets in calculating the intensity function due to the lack of
conversation structure information for test data points.

VI. EXPERIMENTS

A. Baselines

The proposed Hawkes process models are compared against
the HP baseline, and previous state of the art approaches:
HPmixed [2] and Seismic [1].
HPbase: The HP model considering a constant influence
matrix, where all the values are set to 1. It helps us to check
if learning the influence matrix helps in improving predictive
performance within the HP framework.
HPmixed: The HP model [2] which could perform both
temporal dynamics modeling and meme tracking. It infers
the conversational structure instead of using the conversation
information available in the data.
Seismic: The point process model developed to predict the
resharing popularity of Twitter posts [1]. It takes into account
the network information during prediction. However, it does
not predict the exact times at which future posts will occur.

B. Evaluation

The models are trained on tweets up until a given point
in time and then the learnt models are used to predict tweet
occurence times in the future. Predictive performance of
the models is evaluated alongside three different dimensions.



TABLE III
DATASET CHARACTERISTICS. DURATION SHOWN IN MINUTES.

Data # Memes # Users # tweets Duration

Synthetic 5 5 2739 16.8
Ferguson 31 1481 2190 8145
Ottawa 39 4096 6134 4140
Sydney 2 12607 24166 5704

1) User centric: ability to predict future tweet times of a user.
2) Meme centric: ability to predict future tweet times on a
meme. 3) Joint: ability to predict overall future tweet times
irrespective of memes and users. Predictions along each of
these dimensions are obtained by considering the intensity
function marginalized over memes or users or both memes
and users.

We order the tweets based on their timestamps. The pa-
rameters of the model are learnt from the initial few percent
of tweets and the rest are used to evaluate the predictive
performance of the models. In these experiments, predictive
performance is measured using aligned root mean squared
error (ARMSE), which aligns the arrival times and calculates
the root mean squared error (RMSE) between the two sub-
sequences of predicted and actual tweet arrival times [18]. For
the user centric and meme centric evaluations, ARMSE scores
are calculated separately for each user and meme respectively
and the average ARMSE is presented along standard deviation.
We also consider the final count of predictions made by various
models and compute mean absolute error (MAE) with respect
to actual count of tweets.

We conduct experiments on both synthetic and real world
datasets. The purpose of the synthetic experiments is to
observe the model behaviour in controlled settings. We use
three real world datasets [7] consisting of rumour memes from
three major events2:
Ferguson relates to the unrest that took place in Ferguson,
USA in August, 2014. The data set consists of tweets manually
labeled by journalists as belonging to 31 different memes.
Ottawa relates to shootings at the parliament building in
Ottawa during October 2014. It is structured similarly to the
Ferguson dataset.
Sydney relates to the hostage taking in a Sydney cafe in
December 2014, and is considerably larger than the other two
datasets.
The properties of the datasets are shown in Table III. Note
the sparsity of the data, with a very high ratio of users to
tweets. Consequently, these datasets pose significant modeling
challenges.

C. Synthetic Data Experiments

The synthetic dataset is generated by fixing the number of
users, memes and the parameters associated with the intensity
function. The number of users and memes in the synthetic

2Available at http://tinyurl.com/z7kkso2

Fig. 2. Ground truth and learnt α matrices learnt from 50% of synthetic
dataset.

data are both set to 5.3 We assume a sparse influence matrix,
with users 1 and 2 influencing user 3 and user 5 influencing
user 1, and all other α values set to zero.4 We conduct
experiments to verify the ability of the HP models to learn
the influence matrix. The times of tweets are simulated using
Ogata’s thinning algorithm.

Figure 2 provides the heat map associated with the influence
matrix learnt by the different HP models. The influence
matrices are learnt by training on 50% of synthetic data. We
can observe that the α matrix learnt using HPconversation is
close to the gold standard α which generated the observations.
Here, HPdecomposition with rank 2 learns a better α matrix
than HPdecomposition with rank 1 which is not sufficiently
expressive.

We study the predictive performance of HPconversation,
HPdecomposition and HPregularization by varying the frac-
tion of training data on the synthetic data. Since HPconnection
requires a social network and HPfeatures needs user features,
we could not evaluate them on the synthetic data. In Figure 3,
we provide the results on synthetic data for user, meme and
joint evaluations using ARMSE score. As the fraction of
training data increases, the ARMSE score decreases since
the models can fit the parameters well. For smaller training
fraction, HPregularization performed best with respect to all
the evaluation dimensions. By regularizing the α matrix, it
avoids the possible over-fitting that arise due to limited data
size. This is validated by the fact that HPconversation and
HPdecomposition start achieving performance close to HPreg-
ularization when more training data become available. We
could also observe that all the proposed approaches achieved
a performance better than HPbase and the previous approach

3The parameters of the intensity function used to generate the
synthetic data are: µ = [0.13, 0.13, 0.09, 0.14, 0.003] and γ =
[0.97, 0.68, 0.92, 0.96, 0.64]. These values were generated randomly from
U([0, 1]). The exponential decay parameter ω is fixed to 1.

4α1,3 = 0.45, α2,3 = 0.42 and α5,1 = 0.52; see Gold Alpha in Figure 2.



Fig. 3. Results on the Synthetic dataset based on the ARMSE of the occurrence times of predicted and actual tweets. We use square root of ARMSE to more
clearly depict the variation in performance of all the different approaches.

TABLE IV
RESULTS ON THE SYNTHETIC DATASET, REPORTING MEAN ABSOLUTE ERROR ON THE COUNT OF PREDICTED AND ACTUAL TWEETS.

30% training 50% training 70% training
Approach User Meme Joint User Meme Joint User Meme Joint
HPbase 159±50 1457±84 423 130±50 988±68 558 119±60 550±44 552

HPmixed 360±190 1881±10 1748 254±136 1346±8 1275 158±83 810±1 763
Seismic 7590±4239 9586±84 7931 9714±164 9714±61 8573 9834±97 9834±32 9178

HPconversation 119±212 1432±89 574 76±114 1030±61 289 42±51 638±36 137
HPdecomposition(1) 145±213 1416±91 605 74±117 1046±66 180 43±56 630±30 72

HPregularization 86±105 1592±63 266 55±54 1151±30 238 37±36 680±27 164

HPmixed. Note that Seismic does not predict exact times and
hence does not yield to the ARMSE evaluation.

We compare the performance of the approaches with re-
spect to mean absolute error (MAE) on the final count of
predictions in Table IV. Again HPregularization gives best
performance with 30% training data. HPconversation and
HPdecomposition start to catch up with HPregularization with
increase in fraction of synthetic data available for training.
HPdecomposition did not improve over HPconversation in
the synthetic dataset due to the smaller number of users.
The proposed HP approaches performed better than HPbase,
HPmixed and Seismic with respect to user evaluation. Learning
influence matrix seems to positively affect the predictions for
individual users but has a negative effect on meme predictions.
In the synthetic data set, Seismic made some occasional high
predictions. To avoid unduly penalizing the method, the MAE
measure is based on an upper bound of 10000 (which only
affects Seismic).

D. Experiments on Real-world Datasets

Turning to our real-world datasets, we compare the accuracy
of our proposed models on predicting future tweets.

a) Ferguson Shootings: First, we conduct experiments
to study the predictive performance of HPdecomposition on
varying the rank of the factors. Figure 4 plots how ARMSE
measure varies with respect to the ranks on various evaluation
measures when trained using 50% of the Ferguson data.
We observe that lower rank factors give better predictive
performance than higher rank factors. Here, lower rank de-
composition improves performance as it results in learning

Fig. 4. Variation in predictive performance of HPdecomposition with respect
to rank on the Ferguson dataset.

a smaller number of parameters from the data and prevents
over-fitting.

Table V compares the ARMSE performance of the HP
models on various fractions of training data. In all the frac-
tions, the proposed models outperformed HPP, HPbase and
HPmixed for user, meme and joint evaluations. Among the
models trained with 30% Ferguson data, HPdecomposition
and HPregularization performed better than other methods.
These models could achieve better generalization performance
by avoiding over-fitting through regularization and low rank
decomposition. HPconnection is also useful in this scenario
as they perform selective regularization to evade over-fitting.
These models are particularly useful with sparse data and
with a large number of users. As the fraction of training data
increases, HPconnection starts improving its performance. It is
found to be the best performing method with 70% of training
data. HPfeatures gives a good performance with respect to user



TABLE V
RESULTS ON THE FERGUSON DATASET, REPORTING ARMSE ON OCCURRENCE TIMES OF PREDICTED AND ACTUAL TWEETS.

30% training 50% training 70% training
Approach User Meme Joint User Meme Joint User Meme Joint
HPbase 100±441 199±428 1752 0.032±0.206 0.098±0.253 0.93 0.013±0.080 0.08±0.14 0.34

HPmixed 27±228 310±563 1715 0.004±0.050 0.184±0.439 0.33 0.003±0.033 0.04±0.08 0.15
HPconversation 20±177 259±388 978 0.009±0.050 0.027±0.098 0.44 0.005±0.042 0.01±0.04 0.06

HPdecomposition(1) 9±135 101±232 596 0.008±0.092 0.026±0.109 0.29 0.004±0.043 0.01±0.03 0.04
HPregularization 9±90 154±259 882 0.001±0.001 0.030±0.150 0.82 0.002±0.032 0.04±0.17 0.33

HPconnection 20±169 142±286 102 0.001±0.021 0.023±0.080 0.34 0.001±0.016 0.01±0.04 0.01
HPfeatures 15±151 165±413 322 0.001±0.024 0.056±0.220 0.73 0.002±0.032 0.04±0.08 0.10

Fig. 5. Results on the Ferguson dataset using MAE on the count of predicted and actual tweets. We use square root of MAE to more clearly depict the
variation in performance of all the different approaches.

evaluation on all the training fractions. The ARMSE measure
of the models when trained using 30% of the Ferguson data is
much higher than that with 50%. This indicates that the models
need to see at least 50% of the data to predict reasonably well.

Figure 5 compares the predictive performance of the HP
models in terms of MAE on various fractions of training data.
HPfeatures which consider user features is giving a better
performance than the rest with respect to user evaluation.
With respect to meme evaluation, Seismic outperformed all
other approaches. Seismic which is specifically developed to
predict meme popularity could better predict the tweet count.
The HP models tend to improve performance with respect
to user evaluation. This is reasonable since the proposed HP
models considered factors specific to users such as connection
information, user features etc.

We learn the features influencing user infectivity and sus-
ceptibility from the one dimensional matrices (weight vectors)
that transform user features to a latent dimension. Table II lists
the features and the corresponding weight vector values. We
find that features such as number of historical tweets, reply
tweets and favourites have a larger impact on infectivity than
other features. The susceptibility of a user is mainly affected
by links ratio and user mentions.

b) Ottawa Shootings: Table VI shows comparison of the
MAE performance of the HP models when trained on 30%
data. The proposed HP models give better performance than
the previous models for user evaluation. Here, HPconnection
and HPdecomposition prove useful in modeling user activ-
ity. Incorporating regularization and connection information
helped to improve the performance of HPconversation on joint

TABLE VI
RESULTS ON OTTAWA USING MAE.

Approach User Meme Joint

HPbase 209±523 7197±5132 81912
HPmixed 253±1419 16208±22083 344457
Seismic 109±1030 1431±206 1749
HPconversation 20±40 2963±1244 24725
HPdecomposition (1) 9±24 3564±921 8670
HPregularization 13±35 3748±678 5511
HPconnection 6±23 3214±1192 4954
HPfeatures (1) 12±30 3005±1181 30957

evaluation while it slightly degraded performance on meme
evaluation. Among the various HP models, HPconnection
gives best performance on joint evaluation. Seismic gives
the overall best performance on meme and joint evaluation
according MAE score.

Next, Table II (right) shows the user features determining
susceptibility and infectivity. We find that the order of user
features affecting susceptibility is the same as in the Ferguson
dataset, with links ratio being the most important. In the Ot-
tawa data set, the links ratio also has an impact on infectivity.
In addition to links ratio, the proportion of reply tweets affects
infectivity while user mentions affect susceptibility.

c) Sydney Siege: Table VII reports the predictive perfor-
mance of the proposed approaches w.r.t. ARMSE score and
trained using 30% of data. We observe that HPdecomposition
gives best performance on user evaluation and HPconnection
gives best performance on meme and joint evaluation criteria.
As observed before, HPconnection uses global connection



TABLE VII
RESULTS ON SYDNEY SIEGE USING ARMSE.

Approach User Meme Joint

HPconversation 16±136 82±21 97
HPdecomposition (1) 3±76 727±111 599
HPregularization 16±111 435±424 441
HPconnection 15±139 36±4 49
HPfeatures (1) 13±119 80±14 96

TABLE VIII
RANK CORRELATION ON MEME POPULARITY.

Approach Synthetic Ferguson Ottawa

HPbase 0.9 0.74 0.42
HPmixed 0.8 0.75 0.51
Seismic NA 0.57 0.17
HPconversation 1.0 0.73 0.55
HPdecomposition(1) 1.0 0.69 0.59
HPregularization 0.8 0.65 0.46
HPconnection NA 0.66 0.51
HPfeatures (1) NA 0.76 0.58

information to obtain a better predictive performance in deter-
mining overall activity in the network. HPfeatures also gives
a good performance on all the three evaluation dimensions.

E. Predicting Meme Virality

We rank the memes according to the predicted counts by
various approaches and compare them with the actual ranking,
using the Spearman rank correlation coefficient. In Table VIII,
we provide rank correlation for various approaches after train-
ing on 30% of data (higher value indicates better correlation
with the actual ranking). We observe that on the synthetic
dataset, all approaches do well in predicting popular memes.
The number of memes is small in synthetic and thus the task is
not quite as challenging. Here, Seismic predicts the same upper
bound for all the memes and hence Spearman rank cannot
be computed. On Ferguson, there is not much difference in
the scores of different approaches. HPfeatures which consider
user specific features to improve predictive performance on
individual users, are also good in predicting meme popularity
in both Ferguson and Ottawa. Though Seismic was found to be
good in predicting the count of tweets associated with a meme,
they are not found to be good in ranking memes according to
popularity. Sydney Siege data contain only 2 memes, hence
Spearman rank correlation does not provide any useful insights
on meme popularity ranking.

VII. CONCLUSION

We proposed an effective approach to integrate the social
media and social network features into a point process frame-
work. Considering the conversation structure (HPconversa-
tion) provides an advantage in terms of computation and is
useful in learning user influences. Over-fitting is avoided by
decomposing the influence matrix using a matrix factorisa-
tion technique or by regularization, both of which improved

user activity modeling. The decomposition approach was also
shown to be useful in modeling the spread of memes with very
few tweets. Considering the social network information for
influence learning was found to be more suitable for predicting
the overall activity in the network, and the diffusion of larger
sized memes. Incorporating features in learning the influence
provided insights into which features are most important for
infectivity and susceptibility, with links ratio proving partic-
ularly important. Overall, considering social media features
in a point process framework improve the ability to model
behavioral dynamics of users and memes.
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