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Executive Summary

The research in this deliverable is focused on identifying and extracting spatial and tem-
poral entity expressions from social media text. This has not been attempted before, with
the majority of temporal information extraction and spatial role labelling tasks being over
newswire. As demonstrated in our earlier research, reported in D2.2., analysing social
media automatically is a particularly challenging task, due to the noisy, irregular, high
volume, and strongly contextual nature of the genre.

This deliverable addresses several research questions. Firstly, we examine how the so-
cial media text type impacts spatio-temporal discourse annotation. Secondly, we address
methods for the effective semantic annotation of spatial and temporal entities in social
media. Thirdly, the challenge of processing new under-resourced languages is addressed
through projection.

The novel contributions presented here are: (i) minimal spatio-temporal entity an-
notation guidelines for social media; (ii) a Twitter dataset annotated for spatio-temporal
entities; (iii) automated methods for cross-genre spatio-temporal entity extraction; (iv) a
method for grounding of locations in documents to linked data through Nomenclature of
Territorial Units for Statistics (NUTS) subdivisions; and, finally, (v) a method for cross-
lingual spatio-temporal entity projection, to enable low-overhead adaptation of our meth-
ods to less resourced languages.

The results of this work comprise:

• A tagger for spatio-temporal entities in social media text;

• A method for grounding locations in NUTS regions;

• Corpora annotated with spatial and temporal entities, over social media text in three
languages (English, German, Bulgarian);

• Guideline refinements for ISO semantic annotation when applied to microblog so-
cial media text.
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Chapter 1

Introduction

Recently people have started using social media not only to keep in touch with family
and friends, but also increasingly as a news source. However, knowledge gathered from
online sources and social media comes with a major caveat – it cannot always be trusted.
Rumours, in particular, tend to spread rapidly through social networks, especially in cir-
cumstances where their veracity is hard to establish. For instance, during an earthquake
in Chile rumours spread through Twitter that a volcano has become active and there was
a tsunami warning in Valparaiso (Marcelo et al., 2010). Researchers have found that peo-
ple read untrusted sources for various reasons, the main ones being their interestingness,
entertainment value, a friend’s online recommendation, or a search engine result (Ennals
et al., 2010).

Each rumour centres around events, actors and context. These are all vitally important
to the definition of the rumour. Context can be thought of the place and time in which
a rumour takes place; e.g. for the rumours surrounding Vladimir Putin’s disappearance,
there was a strict temporal context – March 2015 – and a soft spatial context: Russia.
Therefore, spatio-temporal information provides critical information to understanding the
rumour.

In addition, social media craves grounding context. Messages are short, and authors
tend to assume that they will be read soon by someone in their social network (whether
defined by explicit friendship / follower relations, or through homophily). These factors
create implicit context, meaning that messages can be short and vague, in the knowledge
that the reader will likely have enough common context to understand the message at the
time that they read it. This leads to incomplete information in the message. As a result,
actors involved in rumours are often referred to in vague terms, and need to be grounded
before they can be automatically processed.

This deliverable describes methods for performing spatio-temporal information ex-
traction and grounding in social media text. To account for the gamut of social media
text types, we begin applying newswire extraction techniques over Twitter text, which
as a platform is both a tough NLP genre Derczynski et al. (2013a) and also the model
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CHAPTER 1. INTRODUCTION 4

organism of social media Tufekci (2014). We include tweets as a counter to newswire
because they are much tougher to process than other sources, and rich in colloquialisms.
Forums and blog posts are in nature easier as they are closer to newswire (Baldwin et al.,
2013), and so readily accessible by tools that excel at both news and tweets. Specifically,
we examine the use of spatio-temporal language in four PHEME rumours. In particular,
we want to extract spatial and temporal entity mentions from user-generated content; we
want to spatially ground tweets in linked data, for processing by other components in the
project; and we want to develop resources for spatial and temporal information extraction
in the project languages outside English – Bulgarian and German.

Spatial and temporal grounding are key for the following research in visualising spa-
tial and temporal properties of rumours (D5.3), in integrating spatio-temporal knowledge
within the PHEME framework (WP7), and in presenting longitudinal models of events and
users.

To capitalise on prior research and the resources already gathered in PHEME, we take
unconventional approaches to spatio-temporal information extraction and projection. In-
stead of the traditional supervised model of building a dataset, annotating it, extracting
features and learning a classifier, we use the Twitter-specific tools from D2.2 to process
our large corpora and then proceed with unsupervised feature extraction over this data.
To manage the costly transition in linguistic processing from newswire to tweets, having
already developed tools, we use both these for English but also blend news with non-news
data during our unsupervised feature extraction (with an advanced version of Brown clus-
tering). This results in knowledge that crosses both text types and is effective at many
entity recognition tasks in general, and thus can be readily applied outside of PHEME. In
addition, the unsupervised feature extraction can now also be applied to new languages
given the tools developed in D2.2, easing the otherwise large challenges of crossing not
only text type from news to user-generated context but also the crossing from English to
new languages, German and Bulgarian.

Our approach results in automatic tools for spatio-temporal information extraction
over tweets and resources in new languages.

We detail our spatio-temporal entity extraction in Chapter 2. The performance is
acceptable, being a bit below state-of-the-art newswire performance (e.g. to 69% F1
for event recognition in tweets with our system, from 72% F1 for events in newswire
as the best score in the multiple-participant TempEval-3 shared task (UzZaman et al.,
2013)). A drop in performance is expected given the usual step down in moving from
newswire to Twitter processing. In fact, as state-of-the-art tools like the Stanford Named
Entity Recognition kit drop from 89% to 41% F1 on tweets (Derczynski et al., 2013a)
– a 48% drop in absolute performance – we consider our results in this domain strong,
and exceptionally efficient, as well as easy to expand and transfer to new domains and
languages.

Chapter 3 details our work in linking spatial entities found in tweets to linked data.
We detail the integration of a state-of-the-art entity linking system with geographic data



CHAPTER 1. INTRODUCTION 5

sources, leading to three sources of location grounding. This includes an analysis of
the different levels of granularity available for grounding social media posts. In general,
we found that more specific items became harder and harder to pinpoint, but could be
done so with greater accuracy. Given that notable rumours are more likely to be spatially
contextualised at the level of city or above, the work is suitable for PHEME.

In Chapter 4, we detail our method for projecting annotations from existing gold-
standard resources to new languages. Specifically, we map the ACE SpatialML anno-
tations and TimeBank 1.2 from English into German and Bulgarian. These resources
have been developed from mature and now ISO-grade annotation schemata; in addition,
they have been around for a while and in the case of TimeBank received and integrated
multiple iterations of considerable constructive community feedback, e.g. (Boguraev and
Ando, 2006; Boguraev et al., 2007). This led to very solid resources. The annotation pro-
jection technique is selected based on the property that both annotation standards aim for
minimal-length annotations of the expressed concepts. Finally, we use a crowdsourcing
step to screen out bad projected annotations.

1.1 Relevance to PHEME

The PHEME project aims to detect and study the emergence and propagation of rumours
in social media, which manifest as dubious or false claims. In order to determine the
context and precise meaning of a claim, we must know its spatio-temporal context.

1.1.1 Relevance to project objectives

Visualising rumours over space and time is a key goal of PHEME, and so we require
information that provides that spatial and temporal information. In addition, grounding
rumours in linked data is critical to formally reasoning about them and fact-checking,
and so this connection of events and places to the semantic web is vital. This is also
important for the use cases, as it enable users to inspect, analyse, and refine information
needs around emerging phemes.

1.1.2 Relation to forthcoming and prior research in Pheme

This is the penultimate deliverable in WP2, Ontologies, Multilinguality, and Spatio-
Temporal Grounding. It builds on the linguistic pre-processing and multilinguality tools
in D2.2, making use of these to develop resources useful for general linguistic processing
as well as specifically for spatio-temporal and for Twitter processing. For example, the to-
kenisers developed for English, German and Bulgarian are crucial to effective Brown clus-
ter generation; without them, we would not have come across the novel, cross-language,
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unsupervised approach for building spatio-temporal entity extraction tools presented here.
This is likely to be of great utility to many other researchers.

The spatio-temporal information extracted here enriches the social science research
detailed in T2.1. We can now add explicit spatial and temporal context to the observations
made, leading to a rich and empirical analysis of rumour sources and diffusers in D2.4.
Additionally, as we have chosen Twitter, the hardest social media venue to automatically
process, for our development, our tools should be comfortably robust enough to handle
less challenging sources such as web forums, e.g. Patients Like Me from the biomedical
use-case.

If we have NLP performance problems here, we have in T2.4 ended up developing
algorithms that not only satisfy the description of work but also are flexible in text type
through their unsupervised feature extraction. The upshot of this is that re-adapting to
another specific domain requires only text data, and no manual labelling. As we already
have a large body of text data for each venue and even each forum from T7.2 and T8.2,
we are now in a perfect position to adapt to these texts trivially if needed, using the tools
in D2.2 and the techniques presented here in Chapter 2.

1.1.3 Relation to other work packages

The techniques, software and resources presented in this deliverable use the pre-
processing developed in WP2. They can be readily applied in the use-cases, WP7 and
WP8. In addition, they help contextualise the event clusters generated in WP3, and can
be readily linked with the PHEME veracity framework (WP6). Finally, the PHEME visual
dashboard is informed by the spatio-temporal information used to enrich tweets in this
work package and shared via integration, aiding presentation of spatial and longitudinal
information (WP5).



Chapter 2

Spatio-Temporal Entity Extraction

The goal of this work is to identify and extract spatial and temporal entity expressions
from social media text. This has not been attempted before, with the majority of temporal
information extraction and spatial role labelling tasks being over newswire. However,
PHEME focuses on social media and other less-curated forms of online language, where
rumours are present – in contrast to the structured newswire articles previous technology
has worked on. We are by now aware of the general challenges present in social media
text: increased lexical diversity; orthographic deviation (both intentional and by mistake);
terseness; unstable capitalisation; a lack of annotated datasets; and a lack of context.

The text type is intrinsically important to address. While we understand newswire to
a certain degree, it is highly constrained, having biases not only in terms of its canonical-
ity, but also stemming from explicit rules (e.g. editorial guidelines) and implict sources
(socio-economic bias) (Eisenstein, 2013). Further, text being generated on social media is
of huge volume, because it is essentially a (biased) sampling of all human discourse. The
insights and analyses possible over such a rich and large resource are only just starting to
be realised (Derczynski et al., 2013b). As a result, just as space and time are critical parts
of context in natural language, so is it essential to understand the expressions times and
places in social media text.

Both spatial and temporal semantic annotation can generally be divided into two parts:
annotation of entities, and annotation of the relations that obtain between them. These
parts are each deeply challenging. As the documents in the most plentiful (and one of
the toughest) sources of social media – Twitter – are short, relations are likely to be inter-
document and require entity coreference to address, which adds an intermediate stage to
the process. In this section, we describe approaches to the fundamental first part: entity
annotation.

The research questions addressed are:

• How does the social media text type impact spatio-temporal discourse annotation;

• How can one effectively semantically annotate spatial and temporal entities in social
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CHAPTER 2. SPATIO-TEMPORAL ENTITY EXTRACTION 8

media text?

The novel contributions presented here are: minimal spatio-temporal entity annota-
tion guidelines for social media; a Twitter dataset annotated for spatio-temporal entities;
and automated methods for cross-genre spatio-temporal entity extraction. This leads to
delivery of the following artifacts:

• A tagger for spatio-temporal entities in social media text;

• Corpora annotated with spatial and temporal entities, over social media text;

• Guideline refinements for ISO semantic annotation when applied to tweets.

2.1 Annotation

The first goal is to concretely define what will be extracted. It is prudent to be careful in
this regard and take the target text type into account, instead of picking up an entire exist-
ing annotation standard and applying it in a new challenge. The standards we start from
are ISO-TimeML (Pustejovsky et al., 2010) and ISO-Space (Pustejovsky et al., 2011),
well recognised community standards for temporal and spatial annotation respectively.
These provide full-featured schemas for both entities and relations, though as mentioned,
our focus is on entity annotation only. The parts that we choose for entity annotation are
described below.

There is a lack of certainty about what a “named entity” is. Indeed, it is generally
application dependent; cf. Kripke (Kripke, 1972). This provides strong support for having
adapted our own guidelines to spatio-temporal annotation over the social media text type.

Following recent research on customising annotation (Schneider, 2015), we reduce
the many diverse types of entity supported by these ISO standards down to the set that
is both applicable to social media text and also fits within the scope of our task. Anno-
tating the full standards would be very painful and superfluous to needs; however, taking
a strict subset of the standards is much cheaper than rebuilding a spatio-temporal anno-
tation and encoding standard, especially given the large volume of guidelines, edge case
guidance and other supplementary material that has accumulated for ISO-TimeML and
ISO-SpatialML. This means that, for example, we will ignore all temporal relation infor-
mation and data about spatial paths and other relations. While generally critical to the
understanding of text, these relations are not immediately necessary to the spatial ground-
ing of concepts and entities that is required in PHEME.

In addition, we do not attempt to address the annotation of signals in this work, as
they are primarily intended as intermediaries for relation annotation. However, we do
exploit their nature of being frequently bisemous with spatial and temporal senses in Sec-
tion 2.2.2.
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This leaves temporal and spatial entity annotations only. The specific choices made
are discussed in the two subsections below.

As a general point, we approach this semantic annotation over social media text just
as we have done previous in linguistic annotation work. We do not use a customised
annotation process, or expect lower quality of annotations due to the inherently informal
nature of social media text. It is our prior experience that annotators can engage equally
well with newswire and social media text; this is supported by recent pilot studies (Plank
et al., 2015).

2.1.1 Temporal entities

ISO-TimeML describes two entity types: temporal expressions (timexes) and events.
Briefly, temporal expressions are explicit mentions of periods “for three days” or times
“next April”, and a sophisticated scheme for representing them is provided; events are
single words describing events or eventualities, of many kinds. Following the standard,
we include TIMEX3-style timexes, as they are terser than the TIMEX2 variety, which
capably generates single annotations longer than a whole tweet. Event annotation is more
nuanced. Events can be of many types.

For temporal expressions, we annotated as per the standard. For events, we removed
some kinds of event that can be confusing to annotators (in general) or are more useful for
relation annotation than the entity annotation goal. This means that the following classes
of event are included (descriptions from the TimeML annotation guidelines):

• Reporting – Reporting events describe the action of a person or an organization
declaring something, narrating an event, informing about an event, etc.

• Perception – This class includes events involving the physical perception of another
event. Such events are typically expressed by verbs.

• Aspectual – A grammatical device of aspectual predication, which focuses on dif-
ferent facets of event history.

• I Action – An Intensional Action. An I ACTION introduces an event argument
(which must be in the text explicitly) describing an action or situation from which
we can infer something given its relation with the I ACTION.

• Occurrence – This class includes all the many other kinds of events describing
something that happens or occurs in the world.

And these are excluded:
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• State – States describe circumstances in which something obtains or holds true,
with specific caveats; a broad notion that goes beyond just eventualities and is no-
toriously hard for annotators to learn, as well as often difficult to ground in the
manner required by PHEME (which generally concerns events which are spatially
groundable or bounded).

• I State – Similar to I Actions, this class includes states that refer to alternative or
possible worlds.

In the case of both event and temporal expression annotations, we did not annotate
types or other values, sticking just to entity boundary recognition. Once identified, the
annotation of entity attributes is well-understood, with a large supply of tools performing
just this task (e.g. for timexes, (Llorens et al., 2012; Bethard, 2013)).

2.1.2 Spatial entities

ISO-Space describes two kinds of entity: location and spatial entity. The boundary be-
tween these two is not precisely defined, but in general, locations tend to be the union
of geo-political entities and of geographic features that have a non-human origin. Con-
versely, the spatial entity has the broader definition of “anything participating in a spatial
relation”. Under this, something like “My spoon is in the bowl” would have two spa-
tial entity annotations: spoon and bowl. The general assumption here is that the location
is of coarser spatial granularity than spatial entity. While something like this is useful in
e.g. recipe tasks (Regneri et al., 2010; Kusmierczyk et al., 2015), it does not have a place
in our scenario.

Gaizauskas et al. discuss the boundaries between location and spa-
tial entity (Gaizauskas et al., 2012), finding it to be somewhat subjective and not
consistent either at different spatial scales or over time. For example, geo-political
entities (GPEs) like islands are traditionally locations, whereas restaurants are deemed
somewhat more transient and therefore a spatial entity; however, there are volcanic
islands whose locations shift and even that appear and disappear in timespans shorter
than some restaurants’ existence. In this case, we should be careful to pick something
that fits the social media task well, especially considering that we will not annotate spatial
relations at all. Therefore, we opt for a constrained interpretation of spatial entity.

In this instance, we include the traditional notion of location, and the ACE concept of
GPE (ACE, 2004). In addition, we included the ACE/Freebase concept of “facility” (Bol-
lacker et al., 2008), which is often used in social media entity recognition exercises (Ritter
et al., 2011; Baldwin et al., 2015). We exclude some parts of the spatial entity definition,
giving objects a rough minimum size of about 10m2. This is to avoid including items
not useful for contextualising rumours, e.g. the bowl and spoon from the example above.
Finally, ISO-Space includes an event entity type; also it is implemented differently to that
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in ISO-TimeML, we override this and use just the ISO-TimeML event definition (refined
as above).

2.2 Approach

The datasets, features representations and classifiers used are detailed in this section. Our
general approach is supervised, using in-type and out-of-type training data, represented
with unsupervised features and features specific to the problem. We cast the problem
as sequence labelling, where one attempts to predict labels one after each other in a de-
fined sequence. In this case, the sequence is seen as the words (tokens) in each sentence,
and the labels show whether the token is an entity or not. This approach recognises the
structure inherent in using sentence-level units and in the order of words within each sen-
tence. Labels are in two groups, learned by two different classifiers. For the temporal
entity extraction task, the labels are [TIMEX, EVENT, O]; for the spatial entity extraction
task, the labels are [LOCATION, SPATIAL ENTITY, O]. In both cases, O corresponds to
“outside”, meaning that a token is outside of any entity, i.e., a non-entity word.

2.2.1 Datasets

We use four distinct datasets in this exercise. Firstly, the data which is manually annotated
is drawn from the rumours gathered in deliverable D8.2, as detailed in Section 2.2.6.
Secondly, there are two pre-annotated datasets used to support this: the W-NUT/Ritter NE
annotations (Ritter et al., 2011; Baldwin et al., 2015) for spatial, and the TempEval-2 data
for temporal (Verhagen et al., 2010). Finally, we perform unsupervised feature extraction
through Brown clustering using a sample of tweets from Twitters 10% feed, which is a
fair sample (Kergl et al., 2014), drawn between 2009 and 2015 to induce resilience against
entity drift (Masud et al., 2011; Fromreide et al., 2014) – the garden hose archive (GHA).

2.2.2 Spatio-temporal bisemy

Certain words that have a spatial or temporal sense are well-known to have a spatio-
temporal bisemy: that is, they occur in either a spatial or temporal sense. This has been
useful in prior temporal annotation work, where function tags specifying spatial function
were strong negative indicators of a temporal sense. However, there is insufficient context
in tweets to attempt a classical word sense disambiguation approach, and scant manually-
annotated data for this purpose. To this end, we attempt to identify spatial and temporal
signal words and flag them in tweets, using these flags as features.

Specifically, we add a feature for each signal word encountered, describing whether
it is suspected to occur in a spatial or temporal sense. This is based on existing lists of
temporal signals extracted from prior work (Derczynski and Gaizauskas, 2011) or the
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cats, dogs you, I
love, pet

Figure 2.1: A binary, hierarchical clustering of semantically similar entries. Each leaf
corresponds to a cluster of words (i.e., a “class”).

ground truth; the sense distribution of each word in newswire; and the immediate context
of the word. It is represented as a feature only present if a word has a temporal signal
sense, weighted to the prior probability of an instance of that word actually having that
sense, from the TB-sig TimeBank corpus variant. For example, 69.4% of occurrences
of the word “until” had a temporal sense in this corpus, so when this word is found, a
feature tempsignal=0.694 is added. Conversely, while the word “into” sometimes has a
temporal sense, this does not make for the majority of its occurrences; and accordingly,
the low-weighted feature tempsignal=0.048 is added to its representation.

2.2.3 Cross-genre transfer

Semi-supervised approaches have worked well for Twitter annotation in the past (Ritter
et al., 2011; Johannsen et al., 2014). This can be attributed to the relative lack of annotated
ground truth data for this text type, coupled with the very large amount of text available.
These semi-supervised approaches have seen success by inducing distributional represen-
tations over text of the target type, from for example Brown clustering or Collobert &
Weston embeddings (Turian et al., 2010).

We already have newswire corpora with spatio-temporal entity annotations. We expect
that distributional representations induced over one text type will be less effective when
applied to another, as observed already by (Maas et al., 2011). Therefore, we hypothesise
that inducing such representations over a mixed-genre dataset will afford better cross-
genre resilience.

Accordingly, we introduce Brown clusters in a variety of configurations. Brown clus-
tering builds a hierarchical binary tree, with leaves clustering distributionally similar
words, for a preset number of leaves m (Brown et al., 1992). This generates features
unsupervised, by extracting paths to leaves containing a given word. As we rely heavily
on this technique, a short introduction to it follows.

Brown clustering uses distributional information to group similar words. Unsuper-
vised, it induces a hierarchical clustering over words to form a binary tree (e.g., Fig-
ure 2.1). Brown clustering uses mutual information to determine distributional similarity,
placing similar words in the same cluster and similar clusters nearby in the tree.

In practice, Brown clustering takes an input corpus and number of classes m, and uses
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mutual information to assign each term to one of the m classes. Ideally, each class con-
tains highly semantically-related words, by virtue of words being distributed according to
their meaning (Wittgenstein, 1953). Each class is a leaf on an unbalanced binary tree. The
path from the root to each leaf can be described as a bit string, where the i’th bit is 0 iff the
path branches left at depth i (e.g., you,I is on the path 01 in Figure 2.1). Brown clustering
posits that leaves with longer common path prefixes are more semantically related. For
example, here, the cats,dog and you,I classes are more similar than either is to the love,pet
class.

The fact that Brown clustering as implemented only relies upon bigram information
means that the only linguistic tool required to use it is a tokeniser. As we have developed
tokenisers for social media text in all of the project languages as part of D2.2, we can
apply this tool directly without further manual intervention, using the data gathered with
tools such as those from D6.1.1.

We build models based on 6000 classes, as opposed to the classical 800-1000 used
in NLP. This is designed to permit better capture of the lexical variety expected in social
media text. Following the intuition of the Stanford NER tool in ignoring PoS labels as the
provided features are a superset of those given to its PoS tagger, we also decided against
including separate PoS-tag features here, knowing that we already have a lot of data,
including Brown clusters, which are known to support good discriminative PoS taggers
themselves (Blunsom and Cohn, 2011).

Our approach is to use Brown clustering based on the RCV1 corpus (Rose et al.,
2002) mixed with English-language tweets. We take 64M tokens of the cleaned RCV1
corpus (Liang, 2005), and mix this with 64M tokens of English tweets from an archive
of the Twitter “garden hose”, a 10% feed of all tweets, restricted to just English-language
tweets using langid.py (Lui and Baldwin, 2012). We chose this as langid.py was found
to be the highest-performing tool in an empirical comparison of entity recognition in
tweets (Derczynski et al., 2015c).

2.2.4 Window features

In addition to the clusterings used above, we use n-gram window features, word shape
window features, and part-of-speech tag window features. Although dependencies would
link sentences together better, n-gram window features have given state-of-the-art perfor-
mance in temporal boundary detection before (Llorens et al., 2011), and so we stick with
the simpler representation rather than potentially introduce noise through tweet dependen-
cies. The window used is [-2,2] with unigram and bigram features. This is implemented
through an extension of the CRFsuite API, using the same hardness as USFD developed
for their W-NUT entry (Derczynski et al., 2015a).
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Task Precision Recall F1
using blended data
Event recognition 68.55 69.29 68.92
Timex recognition 59.57 52.83 56.00
Location recognition 81.25 64.36 71.82
Spatial entity recognition 48.15 18.06 26.26
using only rumour data
Location recognition 67.86 42.22 52.05
Spatial entity recognition 28.57 5.88 9.76

Table 2.1: Spatio-temporal entity recognition in tweets

2.2.5 Classifier and features

We attempt to reach high performance by modelling the language used in newswire and
tweets concurrently. To achieve this, we use unsupervised feature extraction through
Brown clusters, blending both newswire and Twitter input. Additionally, we increase the
number of input clusters in order to achieve better cluster resolution, as we are using
features that extract paths and not just the eventual clusters (Derczynski et al., 2015b).

We train our model using CRFsuite’s linear chain implementation, using both L-BFGS
updates (standard) and also passive-aggressive updates to compensate for Twitter noise,
which have been shown to work well with single entity type annotation in tweets (Der-
czynski and Bontcheva, 2014).

2.2.6 Training data

Annotations are made over 400 tweets taken from four rumour instances studied across
PHEMEand delivered in D8.2. These tweets are also annotated for their role in rumour
spread elsewhere in WP2, and for named entities by SWI. The rumours from which En-
glish tweets were drawn are: the Charlie Hebdo shootings; Putin’s 2015 disappearance;
the Germanwings CFIT event; and the shootings in Ferguson. These are annotated for
ISO-TimeML event and temporal expression, and ISO-Space location and spatial entity
(with the above constraints from Section 2.1 applied). The resulting dataset contained
605 events, 122 timexes, 139 spatial entities and 223 locations.

These were combined with existing gold-standard datasets. For the temporal entity
annotation, the TempEval-2 data (Verhagen et al., 2010) was mixed in. For the spatial
entity annotation, the W-NUT data (Baldwin et al., 2015) was added, mapping facility to
spatial entity and geo-loc to location.

The data was split 80% / 20% training/evaluation.
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2.3 Evaluation

Results for spatial and temporal entity annotation are given in Table 2.2.6. This is the
first attempt at spatio-temporal entity annotation in tweets, and so there are no universal
baselines to compare to. However, in newswire, the closest equivalent evaluation for
temporal annotation is TempEval-3 (UzZaman et al., 2013). In this instance, the best F1
for temporal expression extraction was 90.32, drawn between NavyTime and SUTime.
For events, the best F1 was 81.05, from the ATT system. Bear in mind that these figures
are over newswire, which is both constrained in variety of expression (Eisenstein, 2013),
and also has a much larger preceding body of research and resources. In terms of location
and spatial entity recognition, the comparable system is that from W-NUT; here, the best
system (Ousia) reached F1 of 34.48 for spatial entity equivalents and 66.42 for locations.
Indeed, we found the spatial entity extraction task very difficult as well; it may need better
definition. Of greater interest is the high performance of location extraction, which due
to its larger granularity is likely to have a significantly greater impact when it comes to
contextualising and grounding events.

The extra spatial data used to bolster the rumours was drawn from a dataset where
only named entities are annotated. It is still possible for non-named entities to be useful
spatial entities; for example, in “The road to Misrata”, the road is an important entity.
Thus, there is a decent chance of false negative spatial entities in the W-NUT data used
to supplement training data for the spatial recognition task. However, not using the extra
data leaves us with a very small dataset, which is hard for a classifier to generalise over.
We evaluated the impact of this extra named data by training a model on spatial infor-
mation in just rumour tweets, holding out the Putin rumours dataset as test data. This
model performed worse than the model using named entity data only, though location
recognition was still somewhat reasonable.

Finally, we note that in almost every case, recall was lower than precision – an inter-
esting constant in Twitter entity extraction (Derczynski et al., 2013a) that is also apparent
in this new task.

Our system is the first attempt at ISO-compliant spatio-temporal entity grounding
over tweets, and performs reasonably well – while other systems have performed better,
these comparisons are only an approximation to how they might to do on this semantic
annotation task, and included for the sake of completeness.

2.4 Conclusion

We have presented novel and reasoned approaches to spatio-temporal semantic annotation
in tweets. These include representations for crossing the text type boundary between
social media and newswire, and developing word representations that span this significant
gap in text processing. As well as being shared within PHEME, our tools and datasets are
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made available as standalone, open-source utilities and datasets, furthering research in
this challenging and important area.

The resulting data can be found at: http://gate.ac.uk/data/st-socmed-tool.html and also
from the http://pheme.eu website.



Chapter 3

Spatial Grounding

This chapter discusses the grounding of locations in documents to linked data through
Nomenclature of Territorial Units for Statistics (NUTS) subdivisions (c.f. ISO 3166 /
Eurostat). This is useful because it provides an explicit, unambiguous location for a doc-
ument, accessible in universal unified linked data formats. Such grounding is not intrinsic
in typical linked data grounding, to e.g. DBpedia or WikiData.

Being able to spatially ground documents – and the rumours that they may contain –
is critical to building a machine-readable representation of the rumour and its immediate
context. Without it, locations and therefore the context of the rumour become ambiguous,
and it is then difficult to fact check claims. For example, if we cannot tell which Paris
a given tweet refers to in its claim “Paris taxes set to double”, then we do not know if
this claim refers to Paris, Texas or Paris, France. This can lead to an inability to interpret
claims in rumours, due to incorrect contextualisation.

The ability to ground things accurately in space is also important. Failing to do this can
lead to rumours being mis-identified, and incorrect clarifications presented. Continuing
the example, if taxes are set to double in Paris Texas but the lcoation is mis-identified
and a refutation issued citing tax plans for Paris France, the authority of the fact-checking
is diminished, and this always takes a long time to recover. Unfortunately, while hard
in news documents, disambiguation of spatial context in tweets and other social media
streams is even harder (Derczynski et al., 2013b).

We attempt to address this, connecting location mentions in social media text to NUTS
subdivisions, thus spatially grounding them.

3.1 Resources

The resources we use are mostly open source, and consist of linked data repositories and
systems for grounding entities. In addition, we use the spatio-temporal entity recognition
systems developed in Chapter 2.

17
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Figure 3.1: Geonames entry and XML for Sheffield. Note the DBpedia link.

Spatial grounding is achieved through three non-DBpedia mechanisms. Firstly, we
ground in terms of latitude and longitude if these are available in the social media post’s
metadata (which accounts for a growing proportion of work; (Sadilek et al., 2012)). Sec-
ondly, we use the Geonames linked data resource to connect location mentions to this
extensive formal set of conurbations, political regions and geographical features (Fig-
ure 3.1). Finally, we map locations into the EU NUTS location space.

3.2 Method

The goal is to connect mentions of spatial objects to canonical, unambiguous identifiers.
This aids computational processing and reasoning about these mentions.

We make use of the the YODIE state-of-the-art LOD-based entity grounding tools,
developed at USFD in the TrendMiner project,1 and published recently (Gorrell et al.,
2015). These dereference entity mentions in tweets to linked data entries in DBpedia,
where available. In order to link the automatically-detected locations from the CRF-

1http://www.trendminer-project.eu/
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based classifier in Section 2.3, we include any candidates that YODIE generates which
match the token spans corresponding to entities marked as spatial locations. This enables
the recognition of entities that might otherwise have been discounted had YODIE been
run on its own, and is intended to overcome the recall problems dominant in social media
entity extraction (Derczynski et al., 2015c).

Having found a DBpedia reference for locations detected in a document, this can
then be linked to other resources. GeoNames includes explicit references to DBpedia
entries, and so can be mapped. NUTS can also be mapped, though is slightly more dif-
ficult as fine-grained entries do not have exact references. However, YODIE generates
enough information to select NUTS regions for spatial entities grounded in the EU (i.e.
the NUTS-covered region), enabling linking.

To do the linking, we avoid conventional triple stores like OWLIM, in favour of cus-
tom direct lookups. Many commercial and enterprise-grade triple stores are designed for
a single large initial load of updates and then for smaller subsequent changes, with fast
reads being a performance priority. To achieve this priority, they compute all inferences
between triples entered, thus pre-caching this information, in order to speed up reads and
queries. However, as we are doing direct lookups and do not require any transitive reason-
ing between the linked data resources which we are using, this is a wasteful technique; it
takes weeks to run on datasets at our scale, consuming many terabytes of storage. Instead,
we perform direct lookups once, building a pair-store mapping DBpedia to GeoNames and
NUTS.

3.3 Conclusion

The outcome is an enrichment of entities in tweets, grounded spatially in different man-
ners. This comprises our spatial contextualisation of the content. We found that the
(less-specific) spatial entity type (and there also the facility NE type) were grounded less
regularly. These tend to describe either vague regions, or small and precise regions like
bars or car repair garages; there is not enough coverage for this kind of location.

3.3.1 Analysis

This finding, that locations were grounded more regularly, led to two observations. The
approach is appropriate at the level of granularity used for grounding and disambiguating
rumours – usually city-level or sub-city-level, but not house-level. There is also a man-
ifestation of the classic tradeoff between precision and recall: the broader, less-precise
locations are covered well, but the very-precise positional information is harder to link
in a semantic way, usually just available as GPS co-ordinates. Currently, in our datasets,
while 55% of tweets included some kind of co-ordinates, only 15% of tweets came from a
user who had enabled geolocation, and just 2% had point-level accuracy from the source
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device – suggesting that the majority of geographic information embedded in Twitter
metadata is of questionable accuracy, relying on things like user profile and coarse IP
geolocation. This drives demand for indirect ways of spatially grounding content.

3.3.2 Future work

Linking a more fine-grained resource, like Foursquare, to the spatial entities discussed in
tweets, is possible using GPS co-ordinates when available. This can lead to the creation of
new entries in geographical resources. In the interim, some placeholder technique for han-
dling these “unlisted” resources such that they can be use as disambiguation/grounding
resources while tracking a rumour would also be useful – after all, once we have a few
location names and concurrent GPS co-ordinates, a location can confidently be described.
However, the city-level grounding and entity name capture from the tokens used to repre-
sent a location in social media posts is ample for the purposes of PHEME.

Task T6.2 will contain an extended evaluation of the spatio-temporal grounding deliv-
erable, including spatial grounding.



Chapter 4

Cross-lingual Spatio-Temporal Entity
Projection

Identifying mentions of places and times is a difficult and expensive annotation task. It
has mostly only been thoroughly explored for English, and for newswire. This has lead
to a dearth of resources in two of the project’s three languages.

To eliminate annotation cost and effort, annotations in one language can be projected
into another. As we already have reference annotations in English (Chapter 2), it should
be possible to map these onto new languages. The ISO-TimeML framework intended to
be language-independent, though largest body of work using it comprised of applications
to English.

This chapter details the projection of spatial and temporal annotations from English to
German and Bulgarian text. The end result is linguistic resources: models and techniques
for achieving the projections, and the final annotated documents themselves.

4.1 Corpus projection

Many modern approaches to semantic annotation use supervised machine learning, to
build quality NLP tools. Annotating spatial and temporal entity mentions is just such a
semantic annotation problem, and indeed many approaches to the task have been based
on supervised machine learning. However, training data annotated manually by experts
is difficult to come by and expensive to create. In an attempt to overcome this shortage,
we use projection to map annotations over a corpus in one language to a version of that
same corpus in another language. This increases the amount of annotated information
available, for use in e.g. supervised machine learning approaches, while also removing
the conceptual monolingual barrier.

While some systems do exist for automatic temporal or spatial annotation of non-
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English text, these are often rule-based and the number of languages supported is low. In
particular, there are no resources for Buglarian, and only temporal expression annotation
is supported in German, as far as we are aware.

We present an approach to projecting spatial and temporal entity annotations from
English to the two other project languages, German and Bulgarian. The entity types that
we project are those defined in Chapter 2: events, timexes, locations, and spatial entities.
These are taken from the relevant standards, ISO-TimeML (Pustejovsky et al., 2010) and
ISO-Space (Pustejovsky et al., 2011). The two semantic annotation standards include
sophisticated means of linking these spatio-temporal entities using extra-document anno-
tation (for example, descriptions of the time order of events, or how entities spatially relate
to each other, and already have a tracking in the kind of general entity linking work (Bur-
man et al., 2011) used elsewhere in PHEME. These links can be directly applied to project
annotations and do not require additional linguistic processing.

Projected annotations often contain a degree of noise, due to both gold standard er-
rors and errors during word alignment between languages. Additionally, the possibility of
achieving coherent projections requires that the lexicalisation of the concept being pro-
jected follows the direct correspondence assumption, or DCA (Hwa et al., 2002), which
stipulates a homomorphism between source and the literal translation in the target text.
Fortunately, the majority of entities being mapped are often short, and some by defini-
tion are only one token (e.g. ISO-TimeML event mentions). However, deviation from
the DCA cannot be ruled out, and occurs regularly. To deal with this inevitable noise,
we adopt two techniques. Firstly, we use data engineering techniques first proposed
by (Spreyer and Frank, 2008) in order to limit splitting of tokens and contexts. Sec-
ondly, we filter entity mentions through a crowdsourced “sanity check”, asking groups of
crowd workers to rule out suspicious annotations.

4.2 Related Work

Projection of linguistic structure has recently been addressed in treebanks (Tiedemann
et al., 2014). This sophisticated and powerful technique has informed our approach. How-
ever, as we do not rely on capturing syntactic relations, but rather on mapping surface lex-
icalisations from one language to the another and then re-attaching semantic information,
the linguistic level at which this work operated is denser than required, and we can afford
to use a shallower system without losing anything.

For instance, in Example 4.2, the word ordering is different in each language. How-
ever, item 1 happens temporally before item 2 in each instance, and this transcends the
choice of tongue used to express the idea. Therefore, the temporal ordering information
(which is semantic) doesn’t depend on the surface forms. The only thing that is important
for projection is to get the items 1 and 2 mapped to the correct words.

(4.1) The newspaper was printed today1 and will be burned tomorrow2
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(4.2) Die Zeitung wurde heute1 gedruckt und morgens2 gebrannt

Similar techniques have been used for mapping between two reference translations
and applying an automatic tool then converting its results to the target language (Spreyer
and Frank, 2008). This approach is accurate enough to enable learning of a labeller from
the projections; however, we find the idea of taking automatically created semantic anno-
tations and then projecting them for use as training data to be too lossy. We can afford to
start from gold-standard newswire corpora and only lose information during projection,
rather than initial annotation as well. As automatic semantic annotation of spatio-temporal
information is still difficult (Bethard et al., 2015; Pustejovsky et al., 2015), there is still
an inherently large risk in using automatically-generated source annotations. However,
we do adopt some of the logic-based approaches in this work for handling conflicting and
split annotations.

4.3 Methods and data

Using the adapted annotation criteria described in Section 2.1, we isolate a sub-set of
ISO-TimeML and ISO-Space entity annotations over the input corpora. These are the
spatio-temporal entity lexicalisations that will be projected into the target languages.

The source texts are then translated automatically into the destination language, us-
ing the SDL language cloud 1. This gives a parallel corpus. Word alignments are then
extracted using an unsupervised tool, cdec (Dyer et al., 2010). We choose this tool be-
cause it is unsupervised and therefore readily adaptable to any target language. These
alignments create token-to-token mappings between the corpora.

The spatio-temporal annotations and mappings can then be used to build new annota-
tions on the translated documents. These projections are filtered in two passes.

The corpora and entities projected were as follows:

• TimeBank 1.2: 61k tokens, 7900 events, 1400 temporal expressions;

• ACE 2005 SpatialML annotations: 290k tokens, 6900 places as follows: 15 celes-
tial, 616 civil, 86 continent, 3557 country, 538 facility, 6 mountain, 6 mountainous,
3 postal code, 677 populated, 244 populated A, 689 populated B, 288 region, 64
road, 2 vehicle, 68 water.

We divide the SpatialML types, from an earlier iteration of the ISO-Space standard,
into spatial entities and locations as follows:

• spatial entity: facility, postal code, road, vehicle
1https://languagecloud.sdl.com/
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• location: celestial, civil, continent, country, mountain, mountainous, populated,
populated A, populated B, region, water.

4.3.1 Projection filtering 1: Data engineering

The token mappings are filtered according to some basic constraints regarding contiguous
annotations, as specified in (Spreyer and Frank, 2008). In this case, mappings from single
words to other single words are fine, as are mappings from contiguous blocks of words
to single words, or mappings from single words to contiguous blocks of words. Problems
arise when there are non-contiguous aligned spans, or when multiple tags map to the same
token.

In the case of the first problem, going from a single word to a broken sequence of
words, we ignore the break if it is just one or two tokens long, assuming that the target
language needs some extra words to express the same concept. If the required break is
longer, the longest contiguous block is chosen, or the first block in case of a tie. For
the second problem, multiple annotations colliding on one destination annotation, the
choice is made arbitrarily, and given priority. As locations and temporal expressions are
(respectively) generally less ambiguous than spatial entities and events, we prioritise these
two types.

4.3.2 Projection filtering 2: Crowdsourcing

For the second quality assurance pass, we implement a semi-manual “sanity check”. This
uses crowd sourcing, posing a task through the GATE crowd sourcing plugin (Bontcheva
et al., 2014) where workers are given a rough idea of an entity and presented with a
projected annotation. They are asked if the highlighed, projected entity matches the de-
scription (e.g. “Could the highlighted phrase describe a time or date?”). We are content to
include uncertain annotations as positives, as the task is known to be difficult for experts,
and crowd recall is difficult to achieve (Trushkowsky et al., 2013). The task is presented
in the target language, and geographically restricted to the target language’s region; i.e.,
only workers in Bulgaria were asked to judge Bulgarian annotations.

4.4 Results and analysis

4.4.1 Translation and alignment

The documents are translated using the SDL API, in chunks of 4000 characters, to remain
within API limits. Here’s an example input and output:
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• English from gold standard: If Israel is asked to uh stretch itself on matters that are
vital to its security concerns, then we must see an equal effort on the other side.

• German output: Wenn Israel aufgefordert wird, uh selbst dehnen auf Fragen, die so
wichtig sind für ihre Sicherheit sorgen, dann müssen wir eine gleiche Anstrengung
auf der anderen Seite.

• Bulgarian output: Àêî Èçðàåë å ïîìîëåí äà uh ðàçòÿãàíå ñåáå ñè ïî âúïðî-

ñè, êîèòî ñà îò æèçíåíîâàæíî çíà÷åíèå çà ñâîÿòà çàãðèæåíîñò ïî îòíîøå-

íèå íà ñèãóðíîñòòà, òîãàâà íèå òðÿáâà äà âèäèòå ðàâíà óñèëèÿ íà äðóãàòà

ñòðàíà.

After this, cdec is used to generate token-level alignments between the source and
target translations. It takes a set of pairs of sentences, and outputs a sequence of token-
to-token offset relations from the source to target text. So, for the German and Bulgarian
examples in the sentence above:

• EN-DE: 0-0 1-1 2-2 3-3 4-4 5-5 6-6 8-7 9-8 13-9 10-10 11-11 13-12 13-13 14-14
16-15 17-16 18-17 19-18 20-19 21-20 22-21 23-22 24-23 25-24 26-25 27-26

• EN-BG: 0-0 1-1 2-2 3-3 1-4 4-5 5-6 6-7 7-8 8-9 9-10 9-11 12-14 13-15 14-17 15-18
13-19 17-20 18-22 19-23 20-24 21-25 24-26 23-27 24-28 25-29 25-30 26-31 27-32

By this point, we have automatic translations and also token-to-token mappings from
the original text to the target. Some noise is guaranteed – these systems are automatic –
and so there are later filterings to remove this. The remaining step is the projection.

4.4.2 Event and timex projection

Using alignments from cdec and token indices from CAVaT (Derczynski and Gaizauskas,
2012), we created a CoNLL-style output of events and timexes from English TimeBank
to Bulgarian and German. The loaded data looks like this (for events, in this case):

162|e1|OCCURRENCE|snapping|snap|246|1|39
162|e2|OCCURRENCE|loss|loss|303|1|47
162|e4|REPORTING|said|say|326|1|53
162|e5|OCCURRENCE|earned|earn|334|1|55
162|e6|REPORTING|reported|report|447|2|8
162|e240|STATE|$538.5|$538.5|465|2|11
162|e241|STATE|$388.5|$388.5|524|2|25
162|e8|OCCURRENCE|earned|earn|587|3|7
162|e10|REPORTING|said|say|716|5|6
162|e11|I_STATE|expected|expect|724|5|8
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Where the last two values describe the document sentence and token ID respectively.
Using the token ID and the cdec alignments, we project the corresponding annotation (and
its attributes) into the target language.

Note that the TimeML makeinstance type is discarded. This type is used to label
lexicalisations of events and eventualities, and there are some edge cases where more than
one temporal event is evoked by (or represented in) the same word. However, this multiple
instantiation is so rare that makeinstance was de facto dropped after ISO-TimeML, and
its attributes overloaded onto the event type. The event instance ID attributed is retained,
however, and multiple instantiations are now evoked by means of a standoff event that
uses the same event instance ID (eiid).

For timexes, we try to map the entire phrase. Timexes can (and often are) more than
one token long. When the phrase is split, we include up to two interlocuting words (as
long as the timex is three or longer words), or take the longest or earliest group, as above.

4.4.3 Location and spatial entity projection

Projection of the spatial phrases – locations and spatial entities – worked just as with
the events and timexes. These phrases were often longer, so were more prone to being
projected broken; however, in the target languages, the phrases were actually split or re-
arranged less often than temporal expressions. So, while at greater risk of being hard
to project, the actual proportion of contiguous projections was higher, yielding higher-
confidence results.

Note that we also transduce the corpus from SpatialML to ISO-Space through the
splitting of the “place” type to location and spatial entity.

4.4.4 Crowdsourced filtering

As a final step, we used the crowd to filter out clearly wrong results. For each entity,
we created a CrowdFlower job (Biewald, 2012) using the GATE Crowdsourcing plu-
gin (Bontcheva et al., 2014). As crowd recall is problematic (Trushkowsky et al., 2013),
and affirmative and negative statements have different response rates (Wu and Marian,
2014), we phrased the question so that workers would only highlight items that they were
sure were wrong; if there’s uncertainty, the item stays in. This is to compensate for the
complexity in training annotators for spatio-temporal marking, and to avoid throwing out
crowd-debatable items that have come from a correct gold-standard corpus.
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4.5 Conclusion

This chapter detailed the projection of semantic annotations from English into the
project’s two other languages. ISO-standard annotated resources were created, annotated
for both spatial and temporal entities, in Bulgarian and English. The resulting data can
be found at: http://gate.ac.uk/data/st-proj-corpora.html and also from the http://pheme.eu
website.

4.5.1 Future work

The resulting corpora comprise a substantial amount of high-quality data, semantically
annotation for space and time using a dominant standard. The German data is the first
TimeML gold-standard based dataset; previous work used automatically-created annota-
tions from TARSQI, an automatic temporal annotation system (Verhagen et al., 2005).
The spatial annotations in both languages, and the Bulgarian temporal annotations, are all
the first of their kind.

The resulting projected corpora can be used as training data for machine-learning sys-
tems for spatio-temporal entity extraction. These would be the first tools of their kind for
these languages. Additionally, with the adaptations and techniques described in Chap-
ter 2, these can be adapted for social media usage.

In PHEME, the next and final step with these resources is to evaluate their performance
in unseen, real-world data, as part of task T6.4, Accuracy and Scalability Evaluation.



Chapter 5

Conclusion and Future Work

Spatio-temporal grounding allows us to contextualise and therefore correctly recognise
the content of claims on the web. Extraction this kind of information helps us deter-
mine the meaning of claims made on the web, by mining the semantics behind mentions
made by people. We introduced a text-type-insensitive technique for unsupervised entity
recognition, and used this to merge two drastically different text types – newswire and
tweets. In turn, this allowed us to achieve good performance in entity extraction with a
relatively modest amount of manual annotation, by leveraging prior gold-standard anno-
tations and also a large volume of plain text that was gathered previously in PHEME and
pre-processed with the tools in D2.2.

We use state-of-the-art techniques (hyperparameter-tuned Brown clustering and
passive-aggressive CRF) for spatio-temporal entity extraction. The entities found are
then grounded through intersection with a new, high-performance information extrac-
tion framework, YODIE. The resulting documents are to be integrated with the Apache
Kafka framework. PHEME uses Apache Kafka (Kafka, 2011) as the integration frame-
work. Kafka provides a high-throughput, low-latency, distributed platform for handling
real-time data streams. It follows a producer-consumer model where the producers send
messages (topics) over the network to the Kafka cluster which in turn serves them to the
consumers. This allows easy and desynchronised annotation and sharing of data and doc-
uments between all partners, so that spatio-temporal annotation can be decoupled from a
pipeline.

Future work will investigate the effectiveness of the new feature representations pre-
sented and apply them to other tasks in these languages, to determine the likelihood of
rapidly developing high-performance tools for social media processing. In addition, we
can use the tools presented here to connect with event clusters (WP6), providing extra
spatial and longitudinal information for their visualisation (WP5) as well as grounding
them in linked data.

Finally, we will apply these tools to the use cases in WP7 and WP8, adding spatial
and temporal context to the claims and rumours found within these diverse and impactful

28
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scenarios – community medical information and formal journalistic reporting.
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