

Assessment of Tweet Credibility with LDA Features

Jun Ito, Jing Song, Hiroyuki Toda, Yoshimasa Koike, and Satoshi Oyama

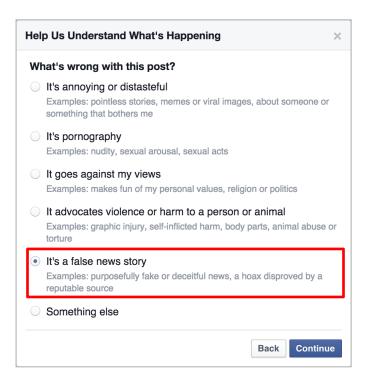
NTT Service Evolution Laboratories, NTT Corporation Graduate School of Information Science and Technology, Hokkaido Univ.

#RDSM, May 19th, 2015

*) This study has done in one month internship period of the second author (Jing Song).

Background: information credibility is a big issue

Facebook enables their users to report a "false news story."

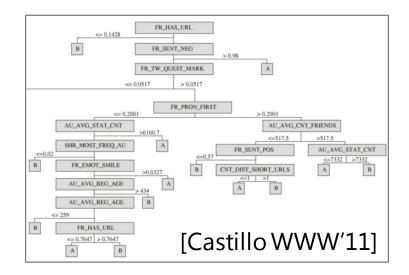


Twitter does not have a hoax reporting function. But there is a PHEME project.

News Feed FYI: Showing Fewer Hoaxes

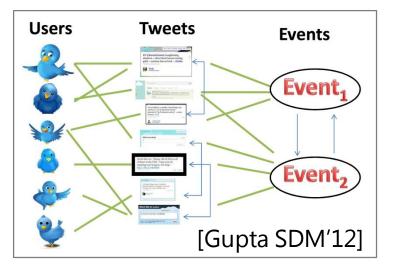
http://newsroom.fb.com/news/2015/01/news-feed-fyishowing-fewer-hoaxes/ PHEME: Computing Veracity http://www.pheme.eu/

Related Work



Information Credibility on Twitter

- Credibility of trends (news events)
- J48 classifier
- Features from text, user, trend, and propagation



Evaluating Event Credibility on Twitter

- Credibility of events
- J48 or KNN
- Features are almost the same as Castillo
- Graph-based optimization after J48/KNN
- Tweets written about the same event have similar credibility score

Our Focus and Contributions

Our Focus

- Tweet credibility of a trendy news post.
- Credibility of every tweet instead of every trend.
- Considering the user topic distributions.

Contributions

- We show <u>basic analysis results that how people judge the credibility</u> of a tweet from the 2,000 trendy tweets in Japan posted on April, 2014.
- We propose the methods to infer information credibility of a tweet by using two new features, the "tweet topic" and the "user topic", derived from the LDA (Latent Dirichlet Allocation) model.
- We build two hypotheses based on a user's "expertness" and "bias" and design four methods to extract additional features.

Data Collection

Data Collection

trends/place

Access API every 5 min to get trendy words

2

Google news

Check whether the trendy words also exists in the Google News title

3

Pick up 10 trends

streaming sample

Collect 200 tweets with trendy words in each trend

Annotate tweet's credibility

4. Sinking of the

Ten trends in our data set

6. White collar exemption

7. STAP cells

8. Escort Ship's Curry Grand Prix

9. Sukiyabashi Jiro

How to annotate credibility

Annotaator

14 annotators who were <u>widely distributed by age and sex</u> and who were all used to Twitter.

Data

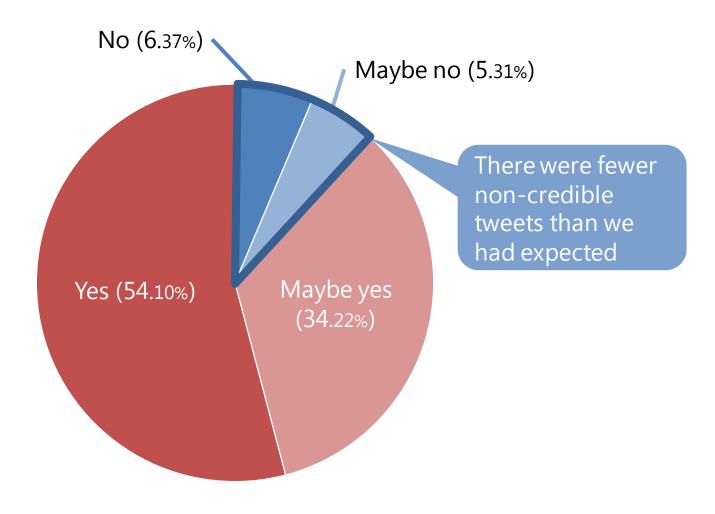
100 tweets w/ URLs and 100 tweets w/o URLs for each trend in ten trends (2,000 tweets in total).

Method

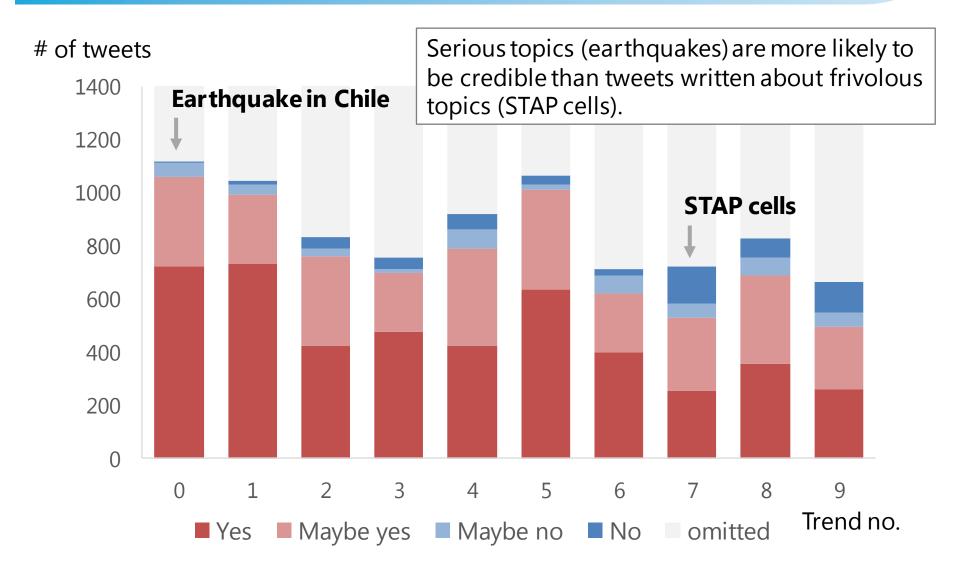
- Seven randomly assigned annotators to answer questions for each tweet.
- The annotators were allowed to see the <u>tweet's text</u>, <u>posted time</u>, <u>user name</u>, and <u>webpages</u> (if URLs were in the tweet).

Answer Results and Analysis

Is this tweet credible?



Credibility for each trend



Why do you think this tweet is credible?

Top 3 reasons to think this tweet as credible

I know about it (60.61%)

It has an information source (54.30%)

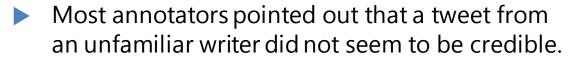
The information source is credible (31.11%)

- The presence of an information source is important.
- The reliability of the tweet's writer is also important.
 - Popular news media, a person who was right there when the incident happened, etc.

Why do you think this tweet is **not** credible?

Top 3 reasons to think this tweet as non-credible

Otherwise (free description) (32.54%)



It has no information source (30.07%)

It is a joke tweet (19.39%)

- The presence of an information source is important.
- The reliability of the tweet's writer is also important.
- Interestingly, 3rd factor was whether the tweet seemed a **joke**.

Analysis Summary

- The presence of an information source is the most important factor in a person's deciding that information has credibility.
- The writer's reliability is also important.
- The level of tweet credibility may **differ from topic to topic**.

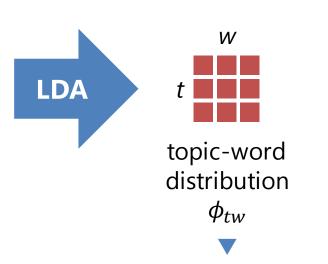
Our Methods

Basic Features

Feature	Description
LENGTH_CHARS	Length of the tweet in characters.
LENGTH_WORDS	in number of words.
CONTAINS_?	Whether the tweet contains '?'.
CONTAINS_!	'!'.
CONTAINS_MULTL?!	multiple '?' or '!'.
NUMBER_OF_URLS	Number of URLs in the tweet.
CONTAINS_URL	Whether the tweet contains a URL.
CONTAINS_MEDIA	a media URL.
CONTAINS_#	a hashtag.
CONTAINS_\$	a symbol.
CONTAINS_@	a mention.
IS_RETWEET	Whether the tweet is a retweet.
REGISTRATION_AGE	Date the user is registered.
STATUSES_COUNT	Total number of tweets.
FOLLOWERS_COUNT	Number of followers.
FRIENDS_COUNT	friends.
LISTED_COUNT	lists.
IS_VERIFIED	Is the user verified.
LENGTH_BIO	Length of bio.
HAS_PROFILE_URL	Is URL contained in bio.
HAS_LOCATION	Is location contained in bio.
DEFAULT_PROFILE	Is bio default.
DEFAULT_PROF_IMG	Is the image in bio default.
USE_BG_IMG	Is background image used.
CONTRIB_ENABLED	Whether contributors can be used.
GEO_ENABLED	Whether geo can be used.

Tweet and User Topics

Past tweets of user u are concatenated as a doc d.



$$P_t(W) = \frac{\sum_{w \in V, W} \phi_{tw}}{\sum_t \sum_{w \in V, W} \phi_{tw}} \qquad P_u(d_u) = \theta_{d_u t}$$

tweet topic

$$P_u(d_u) = \theta_{d_u t}$$

Given a target tweet x, composed of a word set W and posted by user u, we create a feature vector v as

$$v_x = \text{BasicFeatures}(x) + P_t(W) + P_u(d_u)$$

Expertness and Bias

For further inspection of "user topic", we hypothesized

Hypothesis 1 (expertness)

If a Twitter user often writes tweets about some specified topics, the user must know much about those topics, and the tweets the user has written about those topics should have relatively higher credibility.

Hypothesis 2 (bias)

If the topic distribution of a Twitter user diverges much from the average topic distribution of all the users, he/she might be a bot or a very biased user, and the tweets written by the user should have lower credibility.

Expertness and Bias

We tried **four methods** to calculate the **distance** () of two given distributions. The **distance** is **added as new features** to the existing features.

Expertness

Q

Bias

Q'

Jensen-Shannon Divergence (JSD)

$$JSD(P||Q) = \frac{1}{2}KLD(P||M) + \frac{1}{2}KLD(Q||M),$$

$$M = \frac{1}{2}(P+Q), KLD(A||B) = \sum A(i) \ln \frac{A(i)}{B(i)}.$$

TOP1

$$\text{TOP1}(P,Q) = \left\{ \begin{array}{ll} 1 & \text{(if } \operatorname{argmax} P == \operatorname{argmax} Q) \\ 0 & \text{(otherwise)} \end{array} \right.$$

Root Mean Squared Error (RMSE)

RMSE
$$(P, Q) = \sqrt{\frac{1}{K} \sum_{i=1}^{K} (P_i - Q_i)^2}.$$

Squared Error (SE)

$$SE(P,Q) = \sum_{i=1}^{K} (P_i - Q_i)^2$$

Experiments and Results

Experiments

Exp. 1. Effectiveness of Tweet and User Topics

Exp. 2. Effectiveness of Expertness and Bias

Data

- Labeled 2,000 tweets
 - Class 1 (positive): The tweets labeled "Yes" or "Maybe yes" by at least four of seven annotators
 - Class 0 (negative): Otherwise
- Past tweets of users in labeled tweets

Tools

- GibbsLDA++
 - Only <u>nouns</u> with appearance frequency <u>over ten</u> are used
- scikit-learn (RandomForestClassifier)
- MeCab (Japanese part-of-speech and morphological analyzer)

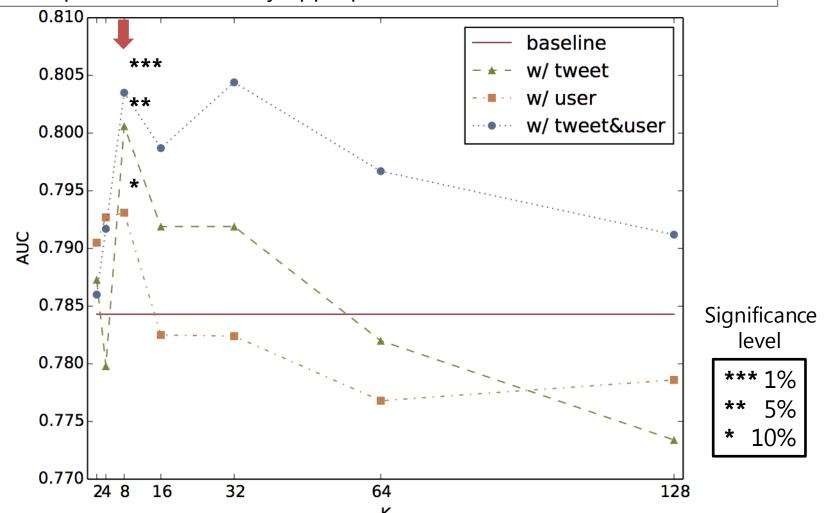
Evaluation

AUC (Area Under Curve) for whole prediction outputs of 10-fold cross validation.

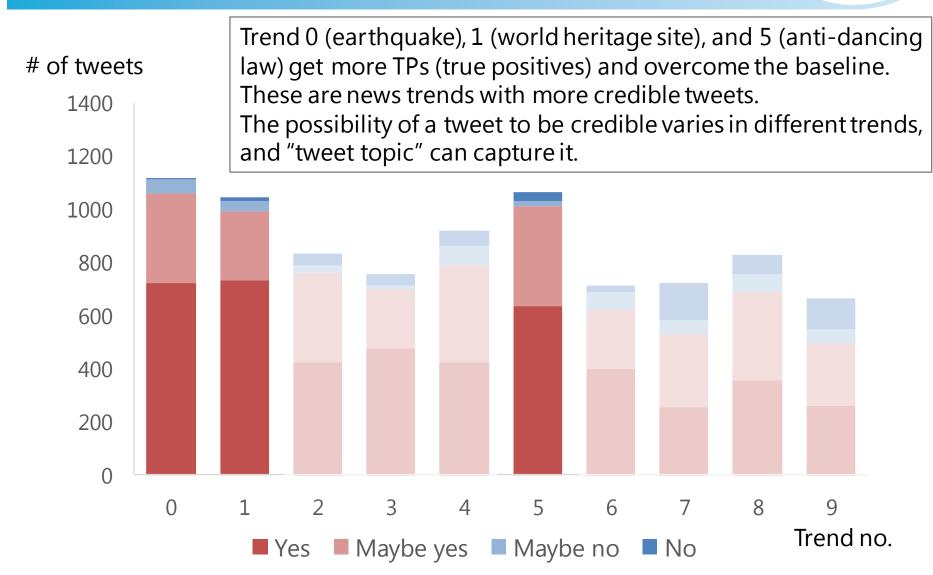
Exp. 1. Effectiveness of Tweet and User Topics

Both tweet topic and user topic are useful to evaluate the credibility of a tweet, when the topics are clustered by appropriate size (K=8).

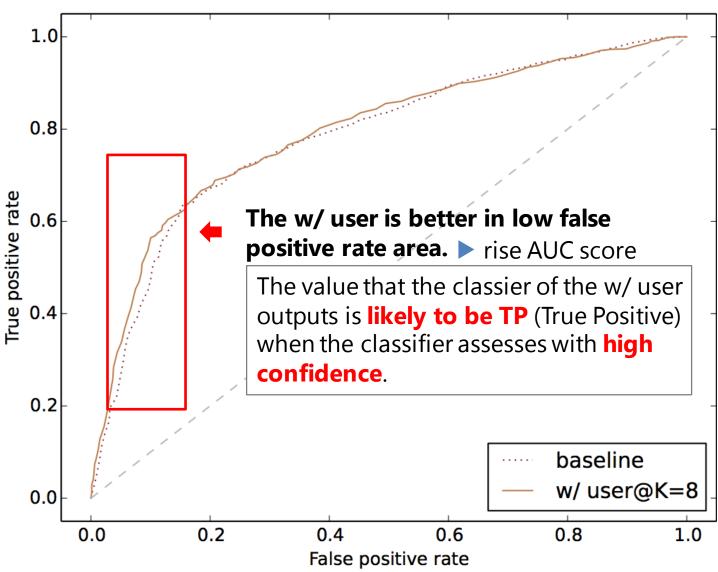
Copyright@2015 NTT corp. All Rights Reserved.



Why "tweet topic" works?



Why "user topic" works?



Exp. 2. Effectiveness of Expertness and Bias

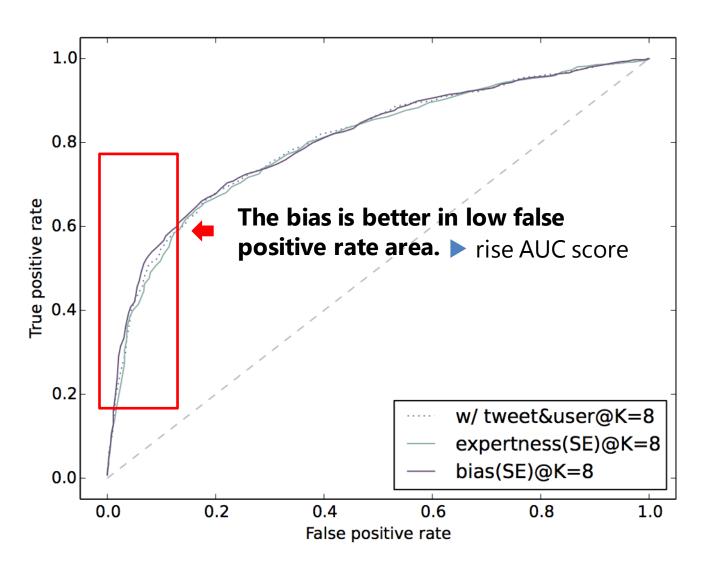
- Out of the 28 combinations, the bias worked better than the expertness 20 times.
- SE appears to the best one because it showed good performances with a significant difference many more times than the others.

K	JSD	TOP1	RMSE	SE
$2 \mid$	0.7840	0.7895	0.7871	0.7854
4	0.7872	0.7857	0.7886	0.7845
8	0.8063	0.8039^{**}	0.8044	0.8061**
16	0.8045	0.7983	0.8030	0.7992^{***}
32	0.8034	0.8039	$\boldsymbol{0.8027}$	0.8086
64	0.7973	0.7966	0.7976	0.7970
128	0.7969^{**}	0.7964	0.7967	$\boldsymbol{0.7954}^{**}$

Bold: Over the "expertness" in Tab. 6.

, *: Significance level of 5%, and 1%, respectively.

Why "bias" works?



Conclusions

- "Tweet" topic works
 - The possibility of a tweet to be credible varies in different trends (e.g. earthquakes or gossips).
- "User" topic works
 - Users categorized in some topic (e.g. daily life) tend to appear in trends with more credible tweets.
- "Bias" works
 - The effect of "user" topic is enhanced by adding the "bias" features.

